It was previously hypothesised that the requirements for glycosyl-phosphatidylinositol (GPI) anchoring in mammalian cells and parasitic protozoa are similar but not identical. We have investigated this by converting the GPI cleavage/attachment site in porcine membrane dipeptidase to that found in the trypanosomal variant surface glycoprotein 117 and expressing the resulting mutants in COS-1 cells. Changing the entire (omega), (omega)+1 and (omega)+2 triplet in membrane dipeptidase from Ser-Ala-Ala to Asp-Ser-Ser resulted in efficient GPI anchoring of the mutant proteins, as assessed by cell-surface activity assays and susceptibility to release by phosphatidylinositol-specific phospholipase C. Immunoelectrophoretic blot analysis with antibodies recognising epitopes either side of the native (omega) residue in porcine membrane dipeptidase, and expression of a mutant in which potential alternative cleavage/attachment sites were disrupted, indicated that alternative GPI cleavage/attachment sites had not been used. These results indicate that the requirements for GPI anchoring between mammalian and protozoal cells are not as different as previously suggested, and that rules for predicting the probability of a sequence acting as a GPI cleavage/attachment site need to be applied with caution.

REFERENCES

Aceto
J.
,
Kieber-Emmons
T.
,
Cines
D. B.
(
1999
).
Carboxy-terminal processing of the urokinase receptor: implications for substrate recognition and glycosylphosphatidylinositol anchor addition.
Biochemistry
38
,
992
1001
Anderson
R. G. W.
(
1998
).
The caveolae membrane system.
Annu. Rev. Biochem
67
,
199
225
Benghezal
M.
,
Benachour
A.
,
Rusconi
S.
,
Aebi
M.
,
Conzelmann
A.
(
1996
).
Yeast Gpi8p is essential for GPI anchor attachment onto proteins.
EMBO J
15
,
6575
6583
Bordier
C.
(
1981
).
Phase separation of integral membrane proteins in Triton X-114 solution.
J. Biol. Chem
256
,
1604
1607
Brewis
I. A.
,
Ferguson
M. A. J.
,
Mehlert
A.
,
Turner
A. J.
,
Hooper
N. M.
(
1995
).
Structures of the glycosyl-phosphatidylinositol anchors of porcine and human membrane dipeptidase. Interspecies comparison of the glycan core structures and further structural studies on the porcine anchor.
J. Biol. Chem
270
,
22946
22956
Brown
D.
(
1993
).
The tyrosine kinase connection: how GPI-anchored proteins activate T cells.
Curr. Opin. Immunol
5
,
349
354
Brown
D. A.
,
London
E.
(
1998
).
Functions of lipid rafts in biological membranes.
Annu. Rev. Cell Dev. Biol
14
,
111
136
Bucht
G.
,
Hjalmarsson
K.
(
1996
).
Residues in Torpedo californica acetylcholinesterase necessary for processing to a glycosyl phosphatidylinositol-anchored from.
Biochim. Biophys. Acta
1292
,
223
232
Delahunty
M. D.
,
Stafford
F. J.
,
Yuan
L. C.
,
Shaz
D.
,
Bonifacino
J. S.
(
1993
).
Uncleaved signals for glycosylphosphatidylinositol anchoring cause retention of precursor proteins in the endoplasmic reticulum.
J. Biol. Chem
268
,
12017
12027
Eisenhaber
B.
,
Bork
P.
,
Eisenhaber
F.
(
1998
).
Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase.
Protein Eng
11
,
1155
61
Eisenhaber
B.
,
Bork
P.
,
Eisenhaber
F.
(
1999
).
Prediction of potential GPI-modification sites in proprotein sequences.
J. Mol. Biol
292
,
741
758
Englund
P. T.
(
1993
).
The structure and biosynthesis of glycosyl phosphatidylinositol protein anchors.
Annu. Rev. Biochem
62
,
121
138
Ferguson
M. A. J.
(
1999
).
The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research.
J. Cell Sci
112
,
2799
2809
Field
M. C.
,
Moran
P.
,
Li
W.
,
Keller
G.-A.
,
Caras
I. W.
(
1994
).
Retention and degradation of proteins containing an uncleaved glycosylphosphatidylinositol signal.
J. Biol. Chem
269
,
10830
10837
Furukawa
Y.
,
Tsukamoto
K.
,
Ikezawa
H.
(
1997
).
Mutational analysis of the C-terminal signal peptide of bovine liver 5-nucleotidase for GPI anchoring: a study on the significance of the hydrophilic spacer region.
Biochim. Biophys. Acta
1328
,
185
196
Gerber
L. D.
,
Kodukula
K.
,
Udenfriend
S.
(
1992
).
Phosphatidylinositol glycan (PI-G) anchored membrane proteins. Amino acid requirements adjacent to the site of cleavage and PI-G attachment in the COOH-terminal signal peptide.
J. Biol. Chem
267
,
12168
12173
Hamburger
D.
,
Egerton
M.
,
Riezman
H.
(
1995
).
Yeast Gaa1p is required for attachment of completed GPI anchor onto proteins.
J. Cell Biol
129
,
629
639
Hiroi
Y.
,
Komuro
I.
,
Chen
R.
,
Hosoda
T.
,
Mizuno
T.
,
Kudoh
S.
,
Georgescu
S. P.
,
Medof
M. E.
,
Yazaki
Y.
(
1998
).
Molecular cloningof human homolog of yeast GAA1 which is required for attachment of glycosylphosphatidylinositols to proteins.
FEBS Lett
421
,
252
258
Hooper
N. M.
(
1999
).
Detergent-insoluble glycosphingolipid/cholesterol-rich membrane domains, lipid rafts and caveolae.
Mol. Membr. Biol
16
,
145
156
Hooper
N. M.
,
Low
M. G.
,
Turner
A. J.
(
1987
).
Renal dipeptidase is one of the membrane proteins released by phosphatidylinositol-specific phospholipase C.
Biochem. J
244
,
465
469
Hooper
N. M.
,
Turner
A. J.
(
1987
).
Isolation of two differentially glycosylated forms of peptidyl-dipeptidase A (angiotensin converting enzyme) from pig brain: a re-evaluation of their role in neuropeptide metabolism.
Biochem. J
241
,
625
633
Hooper
N. M.
,
Turner
A. J.
(
1989
).
Ectoenzymes of the kidney microvillar membrane. Isolation and characterization of the amphipathic form of renal dipeptidase and hydrolysis of its glycosyl-phosphatidylinositol anchor by an activity in plasma.
Biochem. J
261
,
811
818
Hooper
N. M.
,
Broomfield
S. J.
,
Turner
A. J.
(
1991
).
Characterization of antibodies to the glycosyl-phosphatidylinositol membrane anchors of mammalian proteins.
Biochem. J
273
,
301
306
Ishihara
A.
,
Hou
Y.
,
Jacobson
K.
(
1987
).
The Thy-1 antigen exhibits rapid lateral diffusion in the plasma membrane of rodent lymphoid cells and fibroblasts.
Proc. Natl. Acad. Sci. USA
84
,
1290
1293
Keynan
S.
,
Hooper
N. M.
,
Turner
A. J.
(
1994
).
Directed mutagenesis of pig renal membrane dipeptidase. His219is critical but the DHXXH motif is not essential for zinc binding or catalytic activity.
FEBS Lett
349
,
50
54
Keynan
S.
,
Habgood
N. T.
,
Hooper
N. M.
,
Turner
A. J.
(
1996
).
Site-directed mutagenesis of conserved cysteine residues in porcine membrane dipeptidase. Cys 361 alone is involved in disulphide-linked dimerization.
Biochemistry
35
,
12511
12517
Kodukula
K.
,
Gerber
L. D.
,
Amthauer
R.
,
Brink
L.
,
Udenfriend
S.
(
1993
).
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment.
J. Cell Biol
120
,
657
664
Kunkel
T. A.
,
Roberts
J. D.
,
Zarkour
R. A.
(
1987
).
Rapid and efficient site-specific mutagenesis without phenotypic selection.
Methods Enzymol
154
,
367
383
Littlewood
G. M.
,
Hooper
N. M.
,
Turner
A. J.
(
1989
).
Ectoenzymes of the kidney microvillar membrane. Affinity purification, characterization and localization of the phospholipase C-solubilized form of renal dipeptidase.
Biochem. J
257
,
361
367
McConville
M. J.
,
Ferguson
M. A. J.
(
1993
).
The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes.
Biochem. J
294
,
305
324
Metz
C. N.
,
Brunner
G.
,
Choi-Muira
N. H.
,
Nguyen
H.
,
Gabrilove
J.
,
Caras
I. W.
,
Altszuler
N.
,
Rifkin
D. B.
,
Wilson
E. L.
,
Davitz
M.A.
) (
1994
).
Release of GPI-anchored membrane proteins by a cell-associated GPI-specific phospholipase D.
EMBO J
13
,
1741
1751
Mizushima
S.
,
Nagata
S.
(
1990
).
pEF-BOS, a powerful mammalian expression vector.
Nucleic Acids Res
18
,
5322
–.
Moran
P.
,
Caras
I. W.
(
1992
).
Proteins containing an uncleaved signal for glycophosphatidylinositol membrane anchor attachment are retained in a post-ER compartment.
J. Cell Biol
119
,
763
772
Moran
P.
,
Caras
I. W.
(
1994
).
Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa.
J. Cell Biol
125
,
333
343
Moran
P.
,
Raab
H.
,
Kohr
W. J.
,
Caras
I. W.
(
1991
).
Glycophospholipid membrane anchor attachment. Molecular analysis of the cleavage/attachment site.
J. Biol. Chem
266
,
1250
1257
Movahedi
S.
,
Hooper
N. M.
(
1997
).
Insulin stimulates the release of the GPI-anchored membrane dipeptidase from 3T3-L1 adipocytes through the action of a phospholipase C.
Biochem. J
326
,
531
537
Nuoffer
C.
,
Horvath
A.
,
Riezman
H.
(
1993
).
Analysis of the sequence requirements for glycosylphosphatidylinositol anchoring of Saccharomyces cerevisiae Gas1 protein.
J. Biol. Chem
268
,
10558
10563
Rached
E.
,
Hooper
N. M.
,
James
P.
,
Semenza
G.
,
Turner
A. J.
,
Mantei
N.
(
1990
).
cDNA cloning and expression in Xenopus laevis oocytes of pig renal dipeptidase, a glycosyl-phosphatidylinositol-anchored ectoenzyme.
Biochem. J
271
,
755
760
Rodriguez-Boulan
E.
,
Powell
S. K.
(
1992
).
Polarity of epithelial and neuronal cells.
Annu. Rev. Cell Biol
8
,
395
427
Smith
P. K.
,
Krohn
R. I.
,
Hermanson
G. T.
,
Mallia
A. K.
,
Gartner
F. H.
,
Provenzano
M. D.
,
Fujimoto
E. K.
,
Goeke
B. J.
,
Olson
B. J.
,
Klenk
D. C.
(
1985
).
Measurement of protein using bicinchoninic acid.
Anal. Biochem
150
,
76
85
Solter
P. F.
,
Hoffman
W. E.
(
1995
).
Canine corticosteroid-induced alkaline phosphatase in serum was solubilized by phospholipase activity in vivo.
Am. J. Physiol
269
,
278
–.
Udenfriend
S.
,
Kodukula
K.
(
1995
).
How glycosyl-phosphatidylinositol-anchored membrane proteins are made.
Annu. Rev. Biochem
64
,
563
591
Udenfriend
S.
,
Kodukula
K.
(
1995
).
Prediction ofsite in nascent precursor of glycosylphosphatidylinositol protein.
Methods Enzymol
250
,
571
582
Yan
W.
,
Ratnam
M.
(
1995
).
Preferred sites of glycosylphosphatidylinositol modification in folate receptors and constraints in the primary structure of the hydrophobic portion of the signal.
Biochemistry
34
,
14594
14600
Yu
J.
,
Nagarajan
S.
,
Knez
J. J.
,
Udenfriend
S.
,
Chen
R.
,
Medof
M. E.
(
1997
).
The affected gene underlying the class K glycosylphosphatidylinositol (GPI) surface protein defect codes for the GPI transamidase.
Proc. Natl. Acad. Sci. USA
94
,
12580
–.
This content is only available via PDF.