Volvox is one of the simplest multicellular organisms with only two cell types, yet it has a surprisingly complex extracellular matrix (ECM) containing many region-specific morphological components, making Volvox suitable as a model system for ECM investigations. ECM deposition begins shortly after inversion, which is the process by which the embryo turns itself right-side-out at the end of embryogenesis. It was previously shown that the gene encoding an ECM glycoprotein called ISG is transcribed very transiently during inversion. Here we show that the developmentally controlled ISG accumulates at the bases of the flagella right after inversion, before any morphologically recognizable ECM structures have yet developed. Later, ISG is abundant in the ‘flagellar hillocks’ that encircle the basal ends of all flagella, and in the adjacent ‘boundary zone’ that delimits the spheroid. Transgenic Volvox were generated which express a truncated form of ISG. These transgenics exhibit a severely disorganized ECM within which the cells are embedded in a highly chaotic manner that precludes motility. A synthetic version of the C-terminal decapeptide of ISG has a similar disorganizing effect, but only when it is applied during or shortly after inversion. We postulate that ISG plays a critical role in morphogenesis and acts as a key organizer of ECM architecture; at the very beginning of ECM formation ISG establishes an essential initial framework that both holds the somatic cells in an adaptive orientation and acts as the scaffold upon which the rest of the ECM can be properly assembled, assuring that somatic cells of post-inversion spheroids are held in orientations and locations that makes adaptive swimming behavior possible.

REFERENCES

Adair
W. S.
,
Steinmetz
S. A.
,
Mattson
D. M.
,
Goodenough
U. W.
,
Heuser
J. E.
(
1987
).
Nucleated assembly of Chlamydomonas and Volvox cell walls.
J. Cell Biol
105
,
2373
2382
Ertl
H.
,
Hallmann
A.
,
Wenzl
S.
,
Sumper
M.
(
1992
).
A novel extensin that may organize extracellular matrix biogenesis in Volvox carteri.
EMBO J
11
,
2055
2062
Hallmann
A.
,
Sumper
M.
(
1994
).
Reporter genes and highly regulated promoters as tools for transformation experiments in Volvox carteri.
Proc. Nat. Acad. Sci. USA
91
,
11562
11566
Hallmann
A.
,
Rappel
A.
,
Sumper
M.
(
1997
).
Gene replacement by homologous recombination in the multicellular green alga Volvox carteri.
Proc. Nat. Acad. Sci. USA
94
,
7469
7474
Hallmann
A.
,
Godl
K.
,
Wenzl
S.
,
Sumper
M.
(
1998
).
The highly efficient sex-inducing pheromone system of Volvox.
Trends Microbiol
6
,
185
189
Horton
R. M.
,
Hunt
H. D.
,
Ho
S. N.
,
Pullen
J. K.
,
Pease
L. R.
(
1989
).
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Gene
77
,
61
68
Huskey
R. J.
(
1979
).
Mutants affecting vegetative cell orientation in Volvox carteri.
Dev. Biol
72
,
236
243
Kirk
D. L.
,
Kirk
M. M.
(
1983
).
Protein synthetic patterns during the asexual life cycle of Volvox carteri.
Dev. Biol
96
,
493
506
Kirk
D. L.
,
Birchem
R.
,
King
N.
(
1986
).
The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature.
J. Cell Sci
80
,
207
231
Kirk
M. M.
,
Kirk
D. L.
(
1985
).
Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development.
Cell
41
,
419
428
Koufopanou
V.
,
Bell
G.
(
1993
).
Soma and germ: An experimental approach using Volvox.
Proc. R. Soc. Lond. Ser. B. Biol. Sci
254
,
107
113
Luft
J. H.
(
1964
).
Electron microscopy of cell extraneous coats as revealed by ruthenium red staining.
J. Cell Biol
23
,
54
–.
Rausch
H.
,
Larsen
N.
,
Schmitt
R.
(
1989
).
Phylogenetic relationships of the green alga Volvox carteri deduced from small-subunit ribosomal RNA comparisons.
J. Mol. Evol
29
,
255
265
Schiedlmeier
B.
,
Schmitt
R.
,
Muller
W.
,
Kirk
M. M.
,
Gruber
H.
,
Mages
W.
,
Kirk
D. L.
(
1994
).
Nuclear transformation of Volvox carteri.
Proc. Nat. Acad. Sci. USA
91
,
5080
5084
Schlipfenbacher
R.
,
Wenzl
S.
,
Lottspeich
F.
,
Sumper
M.
(
1986
).
An extremely hydroxyproline-rich glycoprotein is expressed in inverting Volvox embryos.
FEBS Lett
209
,
57
62
Starr
R. C.
(
1969
).
Structure, reproduction, and differentiation in Volvox carteri f. nagariensis Iyengar, strains HK9 & 10.
Arch. Protistenk
111
,
204
222
Starr
R. C.
,
Jaenicke
L.
(
1974
).
Purification and characterization of the hormone initiating sexual morphogenesis in Volvox carteri f. nagariensis Iyengar.
Proc. Nat. Acad. Sci. USA
71
,
1050
1054
Sumper
M.
,
Hallmann
A.
(
1998
).
Biochemistry of the extracellular matrix of Volvox.
Int. Rev. Cytol
180
,
51
85
Venable
J. H.
,
Coggeshall
R.
(
1965
).
A simplified lead citrate stain for use in electron microscopy.
J. Cell Biol
25
,
407
408
Viamontes
G. I.
,
Fochtmann
L. J.
,
Kirk
D. L.
(
1979
).
Morphogenesis in Volvox: analysis of critical variables.
Cell
17
,
537
550
Wenzl
S.
,
Sumper
M.
(
1982
).
The occurrence of different sulphated cell surface glycoproteins correlates with defined developmental events in Volvox.
FEBS Lett
143
,
311
315
Woessner
J. P.
,
Molendijk
A. J.
,
van Egmond
P.
,
Klis
F. M.
,
Goodenough
U. W.
,
Haring
M. A.
(
1994
).
Domain conservation in several volvocalean cell wall proteins.
Plant Mol. Biol
26
,
947
960
This content is only available via PDF.