Using squid axoplasm as a model system, we have visualized the fast transport of non-filamentous neurofilament protein particles along axonal microtubules. This transport occurs at speeds of 0.5-1.0 microm/second and the majority of neurofilament particles stain with kinesin antibody. These observations demonstrate, for the first time, that fast (0.5-1.0 microm/second) transport of neurofilament proteins occurs along microtubules. In addition, our studies suggest that neurofilament protein can be transported as non-membrane bound, nonfilamentous subunits along axons, and that the transport is kinesin-dependent. Microtubule-based fast transport might therefore provide a mechanism for the distribution and turnover of neurofilament, and perhaps other cytoskeletal proteins, throughout neurons.

Allen
R. D.
,
Weiss
D. G.
,
Hayden
J. H.
,
Brown
D. T.
,
Fujiwake
H.
,
Simpson
M.
(
1985
).
Gliding movement of and bi-directional transport along single native microtubules from squid axoplasm: evidence for an active role of microtubules in cytoplasmic transport.
J. Cell Biol
100
,
1736
1752
Alvarez
J.
,
Guiditta
A.
,
Koenig
E.
(
2000
).
Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype with critique of slow transport hypothesis.
Prog. Neurobiol
62
,
1
62
Bousquet
O.
,
Basseville
M.
,
Vila-Porcile
E.
,
Billette de Villemeur
T.
,
Hauw
J. J.
,
Landrieu
P.
,
Portier
M. M.
(
1996
).
Aggregation of a sub-population of vimentin filaments in cultured human skin fibroblasts derived from patients with giant axonal neuropathy.
Cell Motil. Cytoskel
33
,
115
129
Brady
S. T.
,
Lasek
R. J.
,
Allen
R. D.
(
1982
).
Fast axonal transport in extruded axoplasm from squid giant axon.
Science
218
,
1129
1131
Brady
S. T.
,
Richards
B. W.
,
Leopold
P. L.
(
1993
).
Assay of vesicle motility in squid axoplasm.
Meth. Cell Biol
39
,
191
202
Cole
D. G.
,
Diener
D. R.
,
Himelblau
A. L.
,
Beech
P. L.
,
Fuster
J. C.
,
Rosenbaum
J. L.
(
1998
).
Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.
J. Cell Biol
141
,
993
1008
Dahl
D.
,
Bignami
A.
,
Bich
N. T.
,
Chi
N. H.
(
1980
).
Immunohistochemical characterization of neurofibrillary tangles induced by mitotic spindle inhibitors.
Acta Neuropathol
51
,
165
168
Galbraith
J. A.
,
Reese
T. S.
,
Schlief
M. L.
,
Gallant
P. E.
(
1999
).
Slow transport of unpolymerized tubulin and polymerized neurofilament in the squid giant axon.
Proc. Natl. Acad. Sci. USA
96
,
11589
11594
Gindhart
J. G.
Jr.
,
Desai
C. J.
,
Beushausen
S.
,
Zinn
K.
,
Goldstein
L. S.
(
1998
).
Kinesin light chains are essential for axonal transport in Drosophila.
J. Cell Biol
141
,
443
454
Goldman
R. D.
(
1971
).
The role of three cytoplasmic fibers in BHK-21 cell motility. I. Microtubules and the effects of colchicine.
J. Cell Biol
51
,
752
762
Goldman
J. E.
,
Yen
S. H.
,
Chiu
F. C.
,
Peress
N. S.
(
1983
).
Lewy bodies of Parkinson's disease contain neurofilament antigens.
Science
221
,
1082
1084
Grant
P.
,
Tseng
D.
,
Gould
R. M.
,
Gainer
H.
,
Pant
H. C.
(
1995
).
Expression of neurofilament proteins during development of the nervous system in the squid Loligo pealei.
J. Comp. Neurol
356
,
311
326
Green
K. J.
,
Goldman
R. D.
(
1983
).
The effects of taxol on cytoskeletal components in cultured fibroblasts and epithelial cells.
Cell Motil
3
,
283
305
Gyoeva
F. K.
,
Gelfand
V. I.
(
1991
).
Co-alignment of vimentin intermediate filaments with microtubules depends on kinesin.
Nature
353
,
445
448
Hirokawa
N.
(
1997
).
The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors.
Curr. Opin. Neurobiol
7
,
605
614
Hollenbeck
P. J.
,
Bray
D.
(
1987
).
Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth.
J. Cell Biol
105
,
2827
2835
Koenig
E.
,
Kinsman
S.
,
Repasky
E.
,
Sultz
L.
(
1985
).
Rapid mobility of motile varicosities and inclusions containing alpha-spectrin, actin, and calmodulin in regenerating axons in vitro.
J. Neurosci
5
,
715
729
Kosik
K. S.
,
Orecchio
L. D.
,
Schnapp
B.
,
Inouye
H.
,
Neve
R. L.
(
1990
).
The primary structure and analysis of the squid kinesin heavy chain.
J. Biol. Chem
265
,
3278
3283
Kuznetsov
S. A.
,
Langford
G. M.
,
Weiss
D. G.
(
1992
).
Actin-dependent organelle movement in squid axoplasm.
Nature
356
,
722
725
Lasek
R. J.
,
Garner
J. A.
,
Brady
S. T.
(
1984
).
Axonal transport of the cytoplasmic matrix.
J. Cell Biol
99
,
212
–.
Lasek
R. J.
,
Paggi
P.
,
Katz
M. J.
(
1993
).
The maximum rate of neurofilament transport in axons: a view of molecular transport mechanisms continuously engaged.
Brain Res
616
,
58
64
Llorens
J.
,
Dememes
D.
(
1996
).
3,3-Iminodipropionitrile induces neurofilament accumulations in the perikarya of rat vestibular ganglion neurons.
Brain Res
717
,
118
126
Martenson
C.
,
Stone
K.
,
Reedy
M.
,
Sheetz
M.
(
1993
).
Fast axonal transport is required for growth cone advance.
Nature
366
,
66
69
Molyneaux
B. J.
,
Langford
G. M.
(
1997
).
Characterization of antibodies to the head and tail domains of squid brain myosin V.
Biol. Bull
193
,
222
223
Nixon
R. A.
,
Logvinenko
K. B.
(
1986
).
Multiple fates of newly synthesized neurofilament proteins: evidence for a stationary neurofilament network distributed nonuniformly along axons of retinal ganglion cell neurons.
J. Cell Biol
102
,
647
659
Pazour
G. J.
,
Dickert
B. L.
,
Witman
G. B.
(
1998
).
The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly.
J Cell Biol
144
,
473
481
Prahlad
V.
,
Yoon
M.
,
Moir
R. D.
,
Vale
R. D.
,
Goldman
R. D.
(
1998
).
Rapid movements of vimentin on microtubule tracks: kinesin-dependent assembly of intermediate filament networks.
J. Cell Biol
143
,
159
170
Shea
T. B.
,
Dahl
D. C.
,
Nixon
R. A.
(
1997
).
Fischer I. Triton-soluble phosphovariants of the heavy neurofilament subunit in developing andmature mouse central nervous system.
J. Neurosci. Res
48
,
515
523
Sim
J. S.
,
Franks
K. E.
,
French
S. W.
(
1978
).
Comparative electrophoretic study of Mallory body and intermediate filament protein.
J. Med
9
,
211
221
Terada
S.
,
Nakata
T.
,
Peterson
A. C.
,
Hirokawa
N.
(
1996
).
Visualization of slow axonal transport in vivo.
Science
273
,
784
788
Vale
R. D.
,
Fletterick
R. J.
(
1997
).
The design plan of kinesin motors.
Ann. Rev. Cell Dev. Biol
13
,
745
777
Vale
R. D.
,
Schnapp
B. J.
,
Reese
T. S.
,
Sheetz
M. P.
(
1985
).
Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon.
Cell
40
,
559
569
Veeranna, Shetty
K. T.
,
Amin
N.
,
Grant
P.
,
Albers
R. W.
,
Pant
H. C.
(
1995
).
Inhibition of neuronal cyclin-dependent kinase-5 by staurosporine and purine analogs is independent of activation by Munc-18.
Neurochem. Res
21
,
629
636
Wang
Y.
,
Loomis
P. A.
,
Zinkowski
R. P.
,
Binder
L. I.
(
1993
).
A noveltau transcript in cultured human neuroblastoma cells expressing nuclear tau.
J. Cell Biol
121
,
257
267
Weiss
D. G.
,
Seitz-Tutter
D.
,
Langford
G. M.
(
1991
).
Characteristics of the motor responsible for the gliding of native microtubules from squid axoplasm.
J. Cell Sci
14
,
157
161
Weisenberg
R. C.
,
Flynn
J.
,
Gao
B. C.
,
Awodi
S.
,
Skee
F.
,
Goodman
S. R.
,
Riederer
B. M.
(
1985
).
Microtubule gelation-contraction: essential components and relation to slow axonal transport.
Science
238
,
1119
1122
Yabe
J. T.
,
Pimenta
A.
,
Shea
T. B.
(
1999
).
Kinesin-mediated transport of neurofilament protein oligomers in growing axons.
J. Cell Sci
112
,
3799
3814
Yoon
M.
,
Moir
R. D.
,
Prahlad
V.
,
Goldman
R. D.
(
1998
).
Motile properties of vimentin intermediate filament networks in living cells.
J. Cell Biol
143
,
147
157
This content is only available via PDF.