An in vivo approach has been developed for generation of artificial chromosomes, based on the induction of intrinsic, large-scale amplification mechanisms of mammalian cells. Here, we describe the successful generation of prototype human satellite DNA-based artificial chromosomes via amplification-dependent de novo chromosome formations induced by integration of exogenous DNA sequences into the centromeric/rDNA regions of human acrocentric chromosomes. Subclones with mitotically stable de novo chromosomes were established, which allowed the initial characterization and purification of these artificial chromosomes. Because of the low complexity of their DNA content, they may serve as a useful tool to study the structure and function of higher eukaryotic chromosomes. Human satellite DNA-based artificial chromosomes containing amplified satellite DNA, rDNA, and exogenous DNA sequences were heterochromatic, however, they provided a suitable chromosomal environment for the expression of the integrated exogenous genetic material. We demonstrate that induced de novo chromosome formation is a reproducible and effective methodology in generating artificial chromosomes from predictable sequences of different mammalian species. Satellite DNA-based artificial chromosomes formed by induced large-scale amplifications on the short arm of human acrocentric chromosomes may become safe or low risk vectors in gene therapy.

Barry
A. E.
,
Howman
E. V.
,
Cancilla
M. R.
,
Saffery
R.
,
Choo
A. K. H.
(
1999
).
Sequence analysis of an 80 kb human neocentromere.
Hum. Mol. Genet
8
,
217
227
Chen
C.
,
Okayama
H.
(
1987
).
High-efficiency transformation of mammalian cells by plasmid DNA.
Mol. Cell. Biol
7
,
2745
2752
Co
D. O.
,
Borowski
A. H.
,
Leung
J. D.
,
van der Kaa
J.
,
Hengst
S.
,
Platenburg
G.
,
Pieper
F. R.
,
Perez
C. F.
,
Jirik
F. R.
,
Drayer
J. I.
(
2000
).
Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection.
Chromosome Res
8
,
183
191
Conte
R. A.
,
Kleyman
S. M.
,
Laundon
C.
,
Verma
R. S.
(
1997
).
Characterization of two extreme variants involving the short arm of chromosome 22: are they identical.
Ann. Genet
40
,
145
149
Cuthbert
A. P.
,
Trott
D. A.
,
Ekong
R. M.
,
Jezzard
S.
,
England
N. L.
,
Themis
M.
,
Todd
C. M.
,
Newbold
R. F.
(
1995
).
Construction and characterization of a highly stable human:rodent monochromosomal hybrid panel for genetic complementation and genome mapping studies.
Cytogen. Cell Genet
71
,
68
76
De Jong
G.
,
Telenius
A. H.
,
Telenius
H.
,
Perez
C. F.
,
Drayer
J. I.
,
Hadlaczky
Gy
(
1999
).
Mammalian artificial chromosome pilot facility: Large-scale isolation of functional satellite DNA-based artificial chromosomes.
Cytometry
35
,
129
133
Dieken
E. S.
,
Epner
E. M.
,
Fiering
S.
,
Fournier
R. E. K.
,
Groudine
M.
(
1996
).
Efficient modification of human chromosomal alleles using recombination-proficient chicken/human microcell hybrids.
Nature Genet
12
,
174
182
Fu
S.
,
Fu
H.
,
Xiao
H.
,
Song
X.
,
Chen
J.
,
Gao
C.
,
Qiu
H.
,
Cheng
Z.
(
1992
).
Molecular cytogenetic study of an extra small chromosome.
I Chuan Hsueh Pao
19
,
294
297
Gogel
E.
,
Langst
G.
,
Grummt
I.
,
Knuckle
E.
,
Grummt
F.
(
1996
).
Mapping of replication initiation sites in the mouse ribosomal gene cluster.
Chromosoma
104
,
511
518
Gonzalez
I. L.
,
Sylvester
J. E.
(
1995
).
Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer.
Genomics
27
,
320
328
Gravholt
C. H.
,
Friedrich
U.
(
1995
).
Molecular cytogenetic study of supernumerary marker chromosomes in an unselected group of children.
Am. J. Med. Genet
13
,
106
111
Greig
G. M.
,
Willard
H. F.
(
1992
).
-satellite DNA: Characterization and localization of two subfamilies from the distal and proximal short arms of the human acrocentric chromosomes.
Genomics
12
,
573
580
Hadlaczky
Gy.
,
Praznovszky
T.
,
Cserpán
I.
,
Keresö
J.
,
Peterfy
M.
,
Kelemen
I.
,
Atalay
E.
,
Szeles
A.
,
Szelei
J.
,
Tubak
V.
(
1991
).
Centromere formation in mouse cells cotransformed with human DNA and a dominant marker gene.
Proc. Nat. Acad. Sci. USA
88
,
8106
8110
Harrington
J. J.
,
Van Bokkelen
G.
,
Mays
R. W.
,
Gustashaw
K.
,
Willard
H. F.
(
1997
).
Formation of de novo centromeres and construction of first-generation human artificial microchromosomes.
Nature Genet
4
,
345
355
Hollo
Gy.
,
Keresö
J.
,
Praznovszky
T.
,
Cserpán
I.
,
Fodor
K.
,
Katona
R.
,
Csonka
E.
,
Fátyol
K.
,
Szeles
A.
,
Szalay
A. A.
,
Hadlaczky
Gy
(
1996
).
Evidence for a megareplicon covering megabases of centromeric chromosome segments.
Chromosome Res
4
,
240
247
Ijdo
J. W.
,
Wells
R. A.
,
Baldini
A.
,
Reeders
S. T.
(
1991
).
Improved telomere detection using a telomere repeat probe (TTAGGG)ngenerated by PCR.
Nucl. Acids Res
19
,
4780
–.
Karpen
G. H.
,
Schaefer
J. E.
,
Laird
C. D.
(
1988
).
A Drosophila rRNA gene located in euchromatin is active in transcription and nucleolus formation.
GenesDev
2
,
1745
1763
Keresö
J.
,
Praznovszky
T.
,
Cserpán
I.
,
Fodor
K.
,
Katona
R.
,
Csonka
E.
,
Fátyol
K.
,
Hollo
Gy.
,
Szeles
A.
,
Ross
A. R.
,
Sumner
A. T.
,
Szalay
A. A.
,
Hadlaczky
Gy
(
1996
).
De novo chromosome formations by large-scale amplification of the centromeric region of mouse chromosomes.
Chromosome Res
4
,
226
239
Ledbetter
S. A.
,
Schwartz
C. E.
,
Davies
K. E.
,
Ledbetter
D. H.
(
1991
).
New somatic cell hybrids for physical mapping in distal Xq and the fragile X region.
Am. J. Med. Genet
38
,
418
420
Lewin
B.
(
1998
).
The mistique of epigenetics.
Cell
93
,
301
303
Lucchini
R.
,
Sogo
J. M.
(
1992
).
Different chromatin structures along the spacers flanking active and inactive Xenopus rRNA genes.
Mol. Cell. Biol
12
,
4288
4296
Morgenstern
J. P.
,
Land
H.
(
1990
).
Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line.
Nucl. Acids Res
18
,
3587
3596
Murphy
D. T.
,
Karpen
G. H.
(
1998
).
Centromeres take flight: alpha satellite and the quest for the human centromere.
Cell
93
,
317
320
Nicol
l.
,
Jeppesen
P.
(
1994
).
Human autoimmune sera recognize a conserved 26 kD protein associated with mammalian heterochromatin that is homologous to heterochromatin protein 1 of Drosophila.
Chromosome Res
2
,
245
253
Praznovszky
T.
,
Keresö
J.
,
Tubak
V.
,
Cserpán
I.
,
Fátyol
K.
,
Hadlaczky
Gy
(
1991
).
De novo chromosome formation in rodent cells.
Proc. Nat. Acad. Sci. USA
88
,
11042
11046
Raimondi
E.
,
Balzaretti
M.
,
Moralli
D.
,
Vagnarelli
P.
,
Tredici
F.
,
Bensi
M.
,
De Carli
L.
(
1996
).
Gene targeting to the centromeric DNA of a human minichromosome.
Hum. Gene Ther
7
,
1103
1109
Roberts
C.
,
Brasch
J.
,
Tattersall
M. H.
(
1987
).
Ribosomal RNA gene amplification: a selective advantage in tissue culture.
Cancer Genet. Cytogenet
29
,
119
127
Sakai
K.
,
Ohta
T.
,
Minoshima
S.
,
Kudoh
J.
,
Wang
Y.
,
de Jong
P. J.
,
Shimizu
N.
(
1995
).
Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence.
Genomics
26
,
521
526
Sumner
A. T.
(
1972
).
A simple technique for demonstrating centromeric heterochromatin.
Exp. Cell Res
75
,
304
306
Telenius
H.
,
Szeles
A.
,
Keresö
J.
,
Csonka
E.
,
Praznovszky
T.
,
Imreh
S.
,
Maxwell
A.
,
Perez
C. F.
,
Drayer
J. I.
,
Hadlaczky
G.
(
1999
).
Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species.
Chromosome Res
7
,
3
7
Thoraval
D.
,
Asakawa
J.
,
Kodaira
M.
,
Chang
C.
,
Radany
E.
,
Kuick
R.
,
Lamb
B.
,
Richardson
B.
,
Neel
J. V.
,
Glover
T.
,
Hanash
S.
(
1996
).
A methylated human 9-kb repetitive sequence on acrocentric chromosomes is homologous to a subtelomeric repeat in chimpanzees.
Proc. Nat. Acad. Sci. USA
93
,
4442
4447
Vissel
B.
,
Nagy
A.
,
Choo
K. H. A.
(
1992
).
A satellite III sequence shared by human chromosomes 13, 14, and 21 that is contiguous with alpha satellite DNA.
Cytogenet. Cell Genet
61
,
81
86
Vos
J.-M. H.
(
1998
).
Mammalian artificial chromosomes as tools for gene therapy.
Curr. Opin. Genet. Dev
8
,
351
359
Warburton
P. E.
,
Cooke
H. J.
(
1997
).
Hamster chromosomes containing amplified human alpha-satellite DNA show delayed sister chromatid separation in the absence of de novo kinetochore formation.
Chromosoma
106
,
149
159
Waye
J. S.
,
Willard
H. F.
(
1989
).
Human beta satellite DNA: genomic organization and sequence definition of a class of highly repetitive tandem DNA.
Proc. Nat. Acad. Sci. USA
86
,
6250
6254
Wiens
G. R.
,
Sorger
P. K.
(
1998
).
Centromeric chromatin and epigenic effects in kinetochore assembly.
Cell
93
,
317
320
Worton
R. G.
,
Sutherland
J.
,
Sylvester
J. E.
,
Willard
H. F.
,
Bodrug
S.
,
Dube
I.
,
Duff
C.
,
Kean
V.
,
Ray
P. N.
,
Schmickel
R. D.
(
1988
).
Human ribosomal RNA genes: orientation of the tandem array and conservation of the 5end.
Science
239
,
64
68
This content is only available via PDF.