The tSNARE SNAP-25 is expressed in pancreatic (beta)-cells and is involved in the regulated release of insulin. It has been shown previously that SNAP-25 associates with the plasma membrane consequent to palmitoylation of one or more cysteines in the central region of the molecule. The importance of palmitolyation in the biological function of SNAP-25 in exocytosis was not addressed. Furthermore, studies on both SNAP-25 and its non-palmitoylated homologues SNAP-29 and sec9, have suggested an alternative or complementary mechanism for membrane association involving interaction with syntaxin. To address these issues, we have now studied the behavior and biological activity of cysteine mutant SNAP-25 in insulin-secreting (HIT) cells. While 91% of native SNAP-25 was associated with the membrane, this value decreased to 56% for the single cysteine mutant C85/A and to 10% for the double (C85,88/A) and quadruple (C85,88,90,92/A) mutants. The mutant SNAP-25 forms were all found to bind syntaxin 1A with equal efficacy. Over-expression of syntaxin 1A in HIT cells allowed for partial relocalization of both the double and quadruple SNAP-25 cys mutants to the membrane. By introducing a further mutation to the SNAP-25 molecules to render them resistant to botulinum neurotoxin E, it was possible to study their ability to reconstitute regulated insulin secretion in toxin-treated HIT cells. Native SNAP-25 was able to fully reconstitute secretory activity in such cells. Despite the fact that the single cysteine mutant was significantly displaced to the cytosol, it still displayed 82% activity in the secretion reconstitution assay, and a similar discrepancy was seen for the double mutant. Even the quadruple mutant with no remaining cysteines was able to support a minimal level of secretion. It is concluded that both palmitoylation and binding to syntaxin are implicated in membrane association of SNAP-25. This as well as the discrepancy between membrane localization and biological activity of the cysteine mutants, suggests a complex, multi-component process for association of SNAP-25 with the membrane and its recruitment to a biologically productive state.

Bark
I. C.
(
1993
).
Structure of the chicken gene for SNAP-25 reveals duplicated exon encoding distinct isoforms of the protein.
J. Mol. Biol
233
,
67
76
Bark
I. C.
,
Wilson
M. C.
(
1994
).
Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25.
Gene
139
,
291
292
Brennwald
P.
,
Kearns
B.
,
Champion
K.
,
Keranen
S.
,
Bankaitis
V.
,
Novick
P.
(
1994
).
Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis.
Cell
79
,
245
258
Chapman
E. R.
,
An
S.
,
Barton
N.
,
Jahn
R.
(
1994
).
SNAP-25, a t-SNARE which binds to both syntaxin and synaptobrevin via domains that may form coiled coils.
J. Biol. Chem
269
,
27427
27432
Chen
Y. A.
,
Scales
S. J.
,
Patel
S. M.
,
Doung
Y. C.
,
Scheller
R. H.
(
1999
).
SNARE complex formation is triggered by Ca2+and drives membrane fusion.
Cell
97
,
165
174
Fletcher
A. I.
,
Shuang
R.
,
Giovannucci
D. R.
,
Zhang
L.
,
Bittner
M. A.
,
Stuenkel
E. L.
(
1999
).
Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18.
J. Biol. Chem
274
,
4027
4035
Gonelle-Gispert
C.
,
Halban
P. A.
,
Niemann
H.
,
Palmer
M.
,
Catsicas
S.
,
Sadoul
K.
(
1999
).
SNAP-25a and-25b isoforms are both expressed in insulin-secreting cells and can function in insulin secretion.
Biochem. J
339
,
159
165
Gonzalo
S.
,
Linder
M. E.
(
1998
).
SNAP-25 palmitoylation and plasma membrane targeting require a functional secretory pathway.
Mol. Biol. Cell
9
,
585
597
Hess
D. T.
,
Slater
T. M.
,
Wilson
M. C.
,
Skene
J. H.
(
1992
).
The 25 kDa synaptosomal-associated protein SNAP-25 is the major methionine-rich polypeptide in rapid axonal transport and a major substrate for palmitoylation in adult CNS.
J. Neurosci
12
,
4634
4641
Koticha
D. K.
,
Huddleston
S. J.
,
Witkin
J. W.
,
Baldini
G.
(
1999
).
Role of the cysteine-rich domain of the t-SNARE component, SYNDET, in membrane binding and subcellular localization.
J. Biol. Chem
274
,
9053
9060
Kutay
U.
,
Ahnert Hilger
G.
,
Hartmann
E.
,
Wiedenmann
B.
,
Rapoport
T. A.
(
1995
).
Transport route for synaptobrevin via a novel pathway of insertion into the endoplasmic reticulum membrane.
EMBO J
14
,
217
223
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of the bacteriophage T4.
Nature
227
,
680
685
Lane
S. R.
,
Liu
Y.
(
1997
).
Characterization of the palmitoylation domain of SNAP-25.
J. Neurochem
69
,
1864
1869
Li
G.
,
Hidaka
G.
,
Wollheim
C. B.
(
1992
).
Inhibition of voltage-gated Ca2+channels and insulin secretion in HIT cells by the Ca2+/calmodulin-dependent protein kinase II inhibiter KN-62: comparison with antagonists of calmodulin and L-type Ca2+channels.
Mol. Pharmacol
42
,
489
498
Martin
F.
,
Moya
F.
,
Gutierrez
L. M.
,
Reig
J. A.
,
Soria
B.
(
1995
).
Role of syntaxin in mouse pancreatic beta cells.
Diabetologia
38
,
860
863
Oyler
G. A.
,
Higgins
G. A.
,
Hart
R. A.
,
Battenberg
E.
,
Billingsley
M.
,
Bloom
F. E.
,
Wilson
M. C.
(
1989
).
The identification of a novel synaptosomal-associated protein, SNAP-25, differentially expressed by neuronal subpopulations.
J. Cell Biol
109
,
3039
3052
Parlati
F.
,
Weber
T.
,
McNew
J. A.
,
Westermann
B.
,
Sollner
T. H.
,
Rothman
J. E.
(
1999
).
Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain.
Proc. Nat. Acad. Sci. USA
96
,
12565
12570
Regazzi
R.
,
Sadoul
K.
,
Meda
P.
,
Kelly
R. B.
,
Halban
P. A.
,
Wollheim
C. B.
(
1996
).
Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis.
EMBO J
15
,
6951
6959
Rowe
J.
,
Corradi
N.
,
Malosio
M. L.
,
Taverna
E.
,
Halban
P.
,
Meldolesi
J.
,
Rosa
P.
(
1999
).
Blockade of membrane transport and disassembly of the golgi complex by expression of syntaxin 1A in neurosecretion-incompetent cells: prevention by rbSEC1.
J Cell Sci
112
,
1865
1877
Sadoul
K.
,
Lang
J.
,
Montecucco
C.
,
Weller
U.
,
Regazzi
R.
,
Catsicas
S.
,
Wollheim
C. B.
,
Halban
P. A.
(
1995
).
SNAP-25 is expressed in islets of Langerhans and is involved in insulin release.
J. Cell Biol
128
,
1019
1028
Sadoul
K.
,
Berger
A.
,
Niemann
H.
,
Weller
U.
,
Roche
P. A.
,
Klip
A.
,
Trimble
W. S.
,
Regazzi
R.
,
Catsicas
S.
,
Halban
P. A.
(
1997
).
SNAP-23 is not cleaved by botulinum neurotoxin E and can replace SNAP-25 in the process of insulin secretion.
J. Biol. Chem
272
,
33023
33027
Steegmaier
M.
,
Yang
B.
,
Yoo
J. S.
,
Huang
B.
,
Shen
M.
,
Yu
S.
,
Luo
Y.
,
Scheller
R. H.
(
1998
).
Three novel proteins of the Syntaxin/SNAP-25 family.
J. Biol. Chem
273
,
34171
34179
Veit
M.
(
2000
).
Palmitoylation of the 25-kDa synaptosomal protein (SNAP-25) in vitro occurs in the absence of an enzyme, but is stimulated by binding to syntaxin.
Biochem. J
345
,
145
151
Veit
M.
,
Söllner
T. H.
,
Rothman
J. E.
(
1996
).
Multiple palmitoylation of synaptotagmin and the t-SNARE SNAP-25.
FEBS Lett
385
,
119
123
Vogel
K.
,
Roche
P. A.
(
1999
).
SNAP-23 and SNAP-25 are palmitoylated in vivo.
Biochem. Biophys. Res. Commun
258
,
407
410
Vogel
K.
,
Cabaniols
J. P.
,
Roche
P. A.
(
2000
).
Targeting of SNAP-25 to membranes is mediated by its association with the target SNARE syntaxin.
J. Biol. Chem
275
,
2959
2965
Weller
U.
,
Muller
L.
,
Messner
M.
,
Palmer
M.
,
Valeva
A.
,
Tranum-Jensen
J.
,
Agrawal
P.
,
Biermann
C.
,
Döbereiner
A.
,
Kehoe
M. A.
, et al. 
. (
1996
).
Expression of active streptolysin O in Escherichia coli as a maltose-binding-protein—streptolysin-O fusion protein. The N-terminal 70 amino acids are not required for hemolytic activity.
Eur. J. Biochem
236
,
34
39
This content is only available via PDF.