Red blood cell protein 4.1, 4.1R, is an extreme variation on the theme of isoform multiplicity. The diverse 4.1R isoforms, mainly generated by alternative pre-mRNA splicing, are localized at different intracellular sites, including the nucleus. To characterize nonerythroid 4.1 proteins lacking the most upstream translation initiation site, analyze their intracellular localization and define specific domains involved in differential intracellular targeting of 4.1R, we cloned 4.1 cDNAs lacking that translation initiation site. Seven different 4.1R cDNAs were isolated. Four of these encoded 4.1R proteins localized predominantly to the nucleus and the other three localized to the cytoplasm. Three of the nuclear 4.1R isoforms did not contain the nuclear localization signal previously identified in the alternative exon 16. A comparative analysis of the exon composition of the naturally occurring 4.1R cDNAs cloned and of appropriate composite cDNA constructs, with the subcellular distribution of their respective products, demonstrated that a region encoded by constitutive exons, which is therefore common to all 4.1R isoforms and has been termed ‘core region’, had the capacity of localizing to the nucleus. This region was able to confer nuclear targeting to a cytosolic reporter. In protein 4.1R isoforms, the nuclear targeting of the core region is modulated by the expression of alternative exons. Thus, exon 5-encoded sequences eclipsed nuclear entry of the core region, resulting in 4.1R isoforms that predominantly distributed to the cytoplasm. Exon 5 was also able to confer cytoplasmic localization to a nuclear reporter. In protein 4.1R isoforms, when exons 5 and 16 were both expressed the nuclear targeting effect of exon 16 was dominant to the inhibitory effect observed by the expression of exon 5, yielding proteins that predominantly localized to the nucleus. Taken together, these results indicate that all 4.1R molecules contain a conserved region that is sufficient to target the protein to the nucleus, but that specific exon-encoded sequences modulate this capacity by acting in a hierarchical order.

REFERENCES

Anderson
R. A.
,
Correas
I.
,
Mazzucco
C.
,
Castle
J. D.
,
Marchesi
V. T.
(
1988
).
Tissue-specific analogues of erythrocyte protein 4.1 retain functional domains.
J. Cell. Biochem
37
,
269
284
Beck
K. A.
,
Buchanan
J. A.
,
Malhotra
V.
,
Nelson
W. J.
(
1994
).
Golgi spectrin: identification of an erythroid beta-spectrin homolog associated with the Golgi complex.
J. Cell Biol
127
,
707
723
Beck
K. A.
,
Buchanan
J. A.
,
Nelson
W. J.
(
1997
).
Golgi membrane skeleton: identification, localization and oligomerization of a 195 kDa ankyrin isoform associated with the Golgi complex.
J. Cell Sci
110
,
1239
1249
Boivin
P.
(
1988
).
Role of the phosphorylation of red blood cell membrane proteins.
Biochem. J
256
,
689
695
Cohen
C. M.
,
Foley
S. F.
,
Korsgren
C.
(
1982
).
A protein immunologically related to erythrocyte band 4.1 is found on stress fibres on non-erythroid cells.
Nature
299
,
648
650
Conboy
J. G.
(
1993
).
Structure, function and molecular genetics of erythroid membrane skeletal protein 4.1 in normal and abnormal red blood cells.
Semin. Hematol
30
,
58
73
Conboy
J. G.
,
Chan
J. Y.
,
Chasis
J. A.
,
Kan
Y. W.
,
Mohandas
N.
(
1991
).
Tissue-and development-specific alternative RNA splicing regulates expression of multiple isoforms of erythroid membrane protein 4.1.
J. Biol. Chem
266
,
8273
8280
Correas
I.
(
1991
).
Characterization of isoforms of protein 4.1 present in the nucleus.
Biochem. J
279
,
581
585
Correas
I.
,
Avila
J.
(
1988
).
Erythrocyte protein 4.1 associates with tubulin.
Biochem. J
255
,
217
221
Correas
I.
,
Leto
T. L.
,
Speicher
D. W.
,
Marchesi
V. T.
(
1986
).
Identification of the functional site of erythrocyte protein 4.1 involved in spectrin-actin associations.
J. Biol. Chem
261
,
3310
3315
Correas
I.
,
Speicher
D. W.
,
Marchesi
V. T.
(
1986
).
Structure of the spectrin-actin binding site of erythrocyte protein 4.1.
J. Biol. Chem
261
,
13362
13366
Cox
K. H.
,
Adair-Kirk
T. L.
,
Cox
J. V.
(
1995
).
Four variant chicken erythroid AE1 anion exchangers. Role of the alternative N-terminal sequences in intracellular targeting in transfected human erythroleukemia cells.
J. Biol. Chem
270
,
19752
19760
De Cárcer
G.
,
Lallena
M. J.
,
Correas
I.
(
1995
).
Protein 4.1 is a component of the nuclear matrix of mammalian cells.
Biochem. J
312
,
871
877
Delaunay
J.
(
1995
).
Genetic disorders of the red cell membrane.
Crit. Rev. Oncol. Hematol
19
,
79
110
Devarajan
P.
,
Stabach
P. R.
,
Mann
A. S.
,
Ardito
T.
,
Kashgarian
M.
,
Morrow
J. S.
(
1996
).
Identification of a small cytoplasmic ankyrin (AnkG119) in the kidney and muscle that binds beta I sigma spectrin and associates with the Golgi apparatus.
J. Cell Biol
133
,
819
830
Evan
G. I.
,
Lewis
G. K.
,
Ramsay
G.
,
Bishop
J. M.
(
1985
).
Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.
Mol. Cell. Biol
5
,
3610
3616
Favaloro
J.
,
Treisman
R.
,
Kamen
R.
(
1980
).
Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping.
Methods Enzymol
65
,
718
749
Gascard
P.
,
Lee
G.
,
Coulombel
L.
,
Auffray
I.
,
Lum
M.
,
Parra
M.
,
Conboy
J. G.
,
Mohandas
N.
,
Chasis
J. A.
(
1998
).
Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation.
Blood
92
,
4404
4414
Gascard
P.
,
Nunomura
W.
,
Lee
G.
,
Walensky
L. D.
,
Krauss
S. W.
,
Takakuwa
Y.
,
Chasis
J. A.
,
Mohandas
N.
,
Conboy
J. G.
(
1999
).
Deciphering the nuclear import pathway for the cytoskeletal red cell protein 4.1R.
Mol. Biol. Cell
10
,
1783
1798
Granger
B. L.
,
Lazarides
E.
(
1984
).
Membrane skeletal protein 4.1 of avian erythrocytes is composed of multiple variants that exhibit tissue-specific expression.
Cell
37
,
595
607
Ho
S. N.
,
Hunt
H. D.
,
Horton
R. M.
,
Pullen
J. K.
,
Pease
L. R.
(
1989
).
Site-directed mutagenesis by overlap extension using the polymerase chain reaction.
Gene
77
,
51
59
Horton
R. M.
,
Hunt
H. D.
,
Ho
S. N.
,
Pullen
J. K.
,
Pease
L. R.
(
1989
).
Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension.
Gene
77
,
61
68
Jöns
T.
,
Drenckhahn
D.
(
1992
).
Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to the erythrocyte anion exchanger.
EMBO J
11
,
2863
2867
Kalderon
D.
,
Richardson
W. D.
,
Markham
A. F.
,
Smith
A. E.
(
1984
).
Sequence requirements for nuclear location of simian virus 40 large-T antigen.
Nature
311
,
33
38
Kozak
M.
(
1996
).
Interpreting cDNA sequences: some insights from studies on translation.
Mamm. Genome
7
,
563
574
Krauss
S. W.
,
Chasis
J. A.
,
Rogers
C.
,
Mohandas
N.
,
Krockmalnic
G.
,
Penman
S.
(
1997
).
Structural protein 4.1 is located in mammalian centrosomes.
Proc. Natl. Acad. Sci. USA
94
,
7297
7302
Krauss
S. W.
,
Larabell
C. A.
,
Lockett
S.
,
Gascard
P.
,
Penman
S.
,
Mohandas
N.
,
Chasis
J. A.
(
1997
).
Structural protein 4.1 in the nucleus of human cells: dynamic rearrangements during cell division.
J. Cell Biol
137
,
275
289
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Lallena
M. J.
,
Correas
I.
(
1997
).
Transcription-dependent redistribution of nuclear protein 4.1 to SC35-enriched nuclear domains.
J. Cell Sci
110
,
239
247
Lallena
M. J.
,
Martínez
C.
,
Valcárcel
J.
,
Correas
I.
(
1998
).
Functional association of nuclear protein 4.1 with pre-mRNA splicing factors.
J. Cell Sci
111
,
1963
1971
Leto
T. L.
,
Pratt
B. M.
,
Madri
J. A.
(
1986
).
Mechanisms of cytoskeletal regulation: modulation of aortic endothelial cell protein band 4.1 by the extracellular matrix.
J. Cell. Physiol
127
,
423
431
Lorenzen
J. A.
,
Dadabay
C. Y.
,
Fischer
E. H.
(
1995
).
COOH-terminal sequence motifs target the T cell protein tyrosine phosphatase to the ER and nucleus.
J. Cell Biol
131
,
631
643
Luque
C. M.
,
Lallena
M. J.
,
Alonso
M. A.
,
Correas
I.
(
1998
).
An alternative domain determines nuclear localization in multifunctional protein 4.1.
J. Biol. Chem
273
,
11643
11649
Luque
C. M.
,
Lallena
M. J.
,
Perez-Ferreiro
C. M.
,
de Isidro
Y.
,
De Cárcer
G.
,
Alonso
M. A.
,
Correas
I.
(
1999
).
The N-terminal 209-aa domain of high molecular-weight 4.1R isoforms abrogates 4.1R targeting to the nucleus.
Proc. Natl. Acad. Sci. USA
96
,
14925
149230
Malchiodi-Albedi
F.
,
Ceccarini
M.
,
Winkelmann
J. C.
,
Morrow
J. S.
,
Petrucci
T. C.
(
1993
).
The 270 kDa splice variant of erythrocyte beta-spectrin (I 2) segregates in vivo and in vitro to specific domains of cerebellar neurons.
J. Cell Sci
106
,
67
78
Mattagajasingh
S. N.
,
Huang
S. C.
,
Hartenstein
J. S.
,
Snyder
M.
,
Marchesi
V. T.
,
Benz
E. J.
(
1999
).
A nonerythroid isoform of protein 4.1R interacts with the Nuclear Mitotic Apparatus (NuMA) protein.
J. Cell Biol
145
,
29
43
Parra
M.
,
Gascard
P.
,
Walensky
L. D.
,
Snyder
S. H.
,
Mohandas
N.
,
Conboy
J. G.
(
1998
).
Cloning and characterization of 4.1G (EPB41L2), a new member of the skeletal protein 4.1 (EPB41) gene family.
Genomics
49
,
298
306
Pasternack
G. R.
,
Racusen
R. H.
(
1989
).
Erythrocyte protein 4.1 binds and regulates myosin.
Proc. Natl. Acad. Sci. USA
86
,
9712
9716
Peters
L. L.
,
Weier
H. U.
,
Walensky
L. D.
,
Snyder
S. H.
,
Parra
M.
,
Mohandas
N.
,
Conboy
J. G.
(
1998
).
Four paralogous protein 4.1 genes map to distinct chromosomes in mouse and human.
Genomics
54
,
348
350
Scherer
P. E.
,
Tang
Z.
,
Chun
M.
,
Sargiacomo
M.
,
Lodish
H. F.
,
Lisanti
M. P.
(
1995
).
Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe.
J. Biol. Chem
270
,
16395
16401
Srinivasan
M.
,
Edman
C. F.
,
Schulman
H.
(
1994
).
Alternative splicing introduces a nuclear localization signal that targets multifunctional CaM kinase to the nucleus.
J. Cell Biol
126
,
839
852
Takebe
Y.
,
Seiki
M.
,
Fujisawa
J.
,
Hoy
P.
,
Yokota
K.
,
Arai
K.
,
Yoshida
M.
,
Arai
N.
(
1988
).
SRpromoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat.
Mol. Cell. Biol
8
,
466
472
Tang
T. K.
,
Qin
Z.
,
Leto
T.
,
Marchesi
V. T.
,
Benz
E. J.
Jr.
(
1990
).
Heterogeneity of mRNA and protein products arising from the protein 4.1 gene in erythroid and nonerythroid tissues.
J. Cell Biol
110
,
617
624
Walensky
L. D.
,
Shi
Z. T.
,
Blackshaw
S.
,
DeVries
A. C.
,
Demas
G. E.
,
Gascard
P.
,
Nelson
R. J.
,
Conboy
J. G.
,
Rubin
E. M.
,
Snyder
S. H.
, et al. 
(
1998
).
Neurobehavioral deficits in mice lacking the erythrocyte membrane cytoskeletal protein 4.1.
Curr. Biol
8
,
1269
1272
This content is only available via PDF.