It is established that variations in the structure and activities of betaI spectrin are mediated by differential mRNA splicing. The two betaI spectrin splice forms so far identified have either long or short C-terminal regions. Are analogous mechanisms likely to mediate regulation of betaII spectrins? Thus far, only a long form of betaII spectrin is reported in the literature. Five human expressed sequence tags indicated the existence of a short splice variant of betaII spectrin. The occurrence and DNA sequence of the short C-terminal variant was confirmed by analysis of human and rat cDNA. The novel variant lacks a pleckstrin homology domain, and has 28 C-terminal residues not present in the previously recognized longer form. Transcripts of the short C-terminal variant (7.5 and 7. 0 kb) were most abundant in tissues originating from muscle and nervous system. Antibodies raised to a unique sequence of short C-terminal variant recognized 240 kDa polypeptides in cardiac and skeletal muscle and in nervous tissue; in cerebellum and forebrain, additional 270 kDa polypeptides were detected. In rat heart and skeletal muscle, both long and short C-terminal forms of betaII spectrin localized in the region of the Z line. The central region of the sarcomere, coincident with the M line, was selectively labeled with antibodies to the short C-terminal form. In cerebellum, the short form was not detectable in parallel fibers, structures in which the long form was readily detected. In cultured cerebellar granule neurons, the long form was dominant in neurites, with the short form being most abundant in cell bodies. In vitro, the short form was found to lack the binding activity for the axonal protein fodaxin, which characterizes the C-terminal region of the long form. Subcellular fractionation of brain revealed that the short form was scarcely detectable in post-synaptic density preparations, in which the long form was readily detected. We conclude that variation in the structure of the C-terminal regions of betaII spectrin isoforms correlates with their differential intracellular targeting.

REFERENCES

Altschul
S. F.
,
Gish
W.
,
Miller
W.
,
Myers
E. W.
,
Lipman
D. J.
(
1990
).
Basic Local Alignment Search Tool.
J. Mol. Biol
215
,
403
410
Bennett
V.
,
Gilligan
D. M.
(
1993
).
The spectrin-based membrane skeleton and micron-scale organization of the plasma-membrane.
Annu. Rev. Cell Biol
9
,
27
66
Carlin
R. K.
,
Bartelt
D. C.
,
Siekevitz
P.
(
1983
).
Identification of fodrin as a major calmodulin-binding protein in postsynaptic density preparations.
J. Cell Biol
96
,
443
448
Carlin
R. K.
,
Grab
D. J.
,
Cohen
R. S.
,
Siekevitz
P.
(
1980
).
Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities.
J. Cell Biol
86
,
831
845
Carugo
K. D.
,
Banuelos
S.
,
Saraste
M.
(
1997
).
Crystal structure of a calponin homology domain.
Nat. Struct. Biol
4
,
175
179
Chomczynski
P.
,
Sacchi
N.
(
1987
).
Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction.
Anal. Biochem
162
,
156
159
Clark
M. B.
,
Ma
Y. P.
,
Bloom
M. L.
,
Barker
J. E.
,
Zagon
I. S.
,
Zimmer
W. E.
,
Goodman
S. R.
(
1994
).
Brain alpha-erythroid spectrin—identification, compartmentalization, and beta-spectrin associations.
Brain. Res
663
,
223
236
Davis
J.
,
Bennett
V.
(
1984
).
Brain ankyrin. A membrane associated protein with binding sites for spectrin, tubulin and the cytoplasmic domain of the erythrocyte anion channel.
J. Biol. Chem
259
,
13550
13559
Davis
L. H.
,
Bennett
V.
(
1994
).
Identification of two regions ofGspectrin that bind to distinct sites in brain membranes.
J. Biol. Chem
269
,
4409
4416
De Matteis
M. A.
,
Morrow
J. S.
(
1998
).
The role of ankyrin and spectrin in membrane transport and domain formation.
Curr. Opin. Cell Biol
10
,
542
549
Godi
A.
,
Santone
I.
,
Pertile
P.
,
Devarajan
P.
,
Stabach
P. R.
,
Morrow
J. S.
,
DiTullio
G.
,
Polishchuk
R.
,
Petrucci
T. C.
,
Luini
A.
,
DeMatteis
M. A.
(
1998
).
ADP ribosylation factor regulates spectrin binding to the Golgi complex.
Proc. Natl. Acad. Sci. USA
95
,
8607
8612
Harris
H. W.
Jr.
,
Lux
S. E.
(
1980
).
Structural characterization of the phosphorylation sites of human erythrocyte spectrin.
J. Biol. Chem
255
,
11512
11520
Hayes
N. V. L.
,
Baines
A. J.
(
1994
).
Axonal membrane-skeletal protein A60: association with a brain spectrin binding activity, and entry into cerebellar axons at a stage after the initiation of axonal growth.
J. Neurochem
62
,
300
306
Hayes
N. V. L.
,
Phillips
G. W.
,
Carden
M. J.
,
Baines
A. J.
(
1997
).
Definition of a sequence unique in beta II spectrin required for its axon-specific interaction with fodaxin (A60).
J. Neurochem
68
,
1686
1695
Hu
R. J.
,
Watanabe
M.
,
Bennett
V.
(
1992
).
Characterization of human brain cDNA-encoding the general isoform of beta-spectrin.
J. Biol. Chem
267
,
18715
18722
Isayama
T.
,
Goodman
S. R.
,
Zagon
I. S.
(
1993
).
Localization of spectrin isoforms in the adult mouse heart.
Cell Tissue Res
274
,
127
133
Kordeli
E.
,
Ludosky
M. A.
,
Deprette
C.
,
Frappier
T.
,
Cartaud
J.
(
1998
).
AnkyrinG is associated with the postsynaptic membrane and the sarcoplasmic reticulum in the skeletal muscle fiber.
J. Cell Sci
111
,
2197
2207
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Lombardo
C. R.
,
Weed
S. A.
,
Kennedy
S. P.
,
Forget
B. G.
,
Morrow
J. S.
(
1994
).
Beta II-spectrin (fodrin) and beta I epsilon 2-spectrin (muscle) contain NH2-and COOH-terminal membrane association domains (MAD1 and MAD2).
J. Biol. Chem
269
,
29212
29219
Malchio-Dialbedi
F.
,
Ceccarini
M.
,
Winkelmann
J. C.
,
Morrow
J. S.
,
Petrucci
T. C.
(
1993
).
The 270-kDa splice variant of erythrocyte-Spectrin (I2) segregates in-vivo and in-vitro to specific domains of cerebellar neurons.
J. Cell Sci
106
,
67
78
Manno
S.
,
Takakuwa
Y.
,
Nagao
K.
,
Mohandas
N.
(
1995
).
Modulation Of Erythrocyte-Membrane Mechanical Function By Beta-Spectrin Phosphorylation and Dephosphorylation.
J. Biol. Chem
270
,
5659
5665
Mishra
L.
,
Cai
T.
,
Levine
A.
,
Weng
D.
,
Mezey
E.
,
Mishra
B.
,
Gearhart
J.
(
1998
).
Identification of elf1, a beta-spectrin, in early mouse liver development. Int. J.
Dev. Biol
42
,
221
224
Mishra
L.
,
Cai
T.
,
Yu
P.
,
Monga
S. P.
,
Mishra
B.
(
1999
).
Elf3 encodes a novel 200-kD beta-spectrin: role in liver development.
Oncogene
18
,
353
364
Musacchio
A.
,
Gibson
T.
,
Rice
P.
,
Thompson
J.
,
Saraste
M.
(
1993
).
The PH domain: a common piece in the structural patchwork of signalling proteins.
Trends Biochem. Sci
18
,
343
348
Nath
R.
,
Raser
K. J.
,
Stafford
D.
,
Hajimohammadreza
I.
,
Posner
A.
,
Allen
H.
,
Talanian
R. V.
,
Yuen
P. W.
,
Gilbertsen
R. B.
,
Wang
K. K. W.
(
1996
).
Nonerythroid alpha-spectrin breakdown by calpain and interleukin 1-beta-converting-enzyme-like protease(s) in apoptotic cells—contributory roles of both protease families in neuronal apoptosis.
Biochem. J
319
,
683
690
Nicol
S.
,
Rahman
D.
,
Baines
A. J.
(
1997
).
Ca2+-dependent interaction with calmodulin is conserved in the synapsin family: Identification of a high-affinity site.
Biochemistry
36
,
11487
11495
Pedroni
S.
,
Lecomte
M. C.
,
Gautero
H.
,
Dhermy
D.
(
1993
).
Heterogeneous phosphorylation of erythrocyte spectrin beta chain in intact cells.
Biochem. J
294
,
841
846
Porter
G. A.
,
Scher
M. G.
,
Resneck
W. G.
,
Porter
N. C.
,
Fowler
V. M.
,
Bloch
R. J.
(
1997
).
Two populations of beta-spectrin in rat skeletal muscle.
Cell Motil. Cytoskel
37
,
7
19
Rayner
D.
,
Baines
A. J.
(
1989
).
A novel component of the axonal cortical cytoskeleton, A60, defined by a monoclonal antibody.
J. Cell Sci
94
,
489
500
Rebecchi
M. J.
,
Scarlata
S.
(
1998
).
Pleckstrin homology domains: a common fold with diverse functions.
Annu. Rev. Biophys. Biomol. Struct
27
,
503
528
Sahr
K. E.
,
Laurila
P.
,
Kotula
L.
,
Scarpa
A. L.
,
Coupal
E.
,
Leto
T. L.
,
Linnenbach
A. J.
,
Winkelmann
J. C.
,
Speicher
D. W.
,
Marchesi
V. T.
,
Forget
B. G.
(
1990
).
The complete cDNA and polypeptide sequences of human erythroid alpha spectrin.
J. Biol. Chem
265
,
4434
4443
Sakaguchi
G.
,
Orita
S.
,
Naito
A.
,
Maeda
M.
,
Igarashi
H.
,
Sasaki
T.
,
Takai
Y.
(
1998
).
A novel brain-specific isoform of beta spectrin: isolation and its interaction with Munc13.
Biochem. Biophys. Res. Commun
248
,
846
851
Stankewich
M. C.
,
Tse
W. T.
,
Peters
L. L.
,
Ch'ng
Y.
,
John
K. M.
,
Stabach
P. R.
,
Devarajan
P.
,
Morrow
J. S.
,
Lux
S. E.
(
1998
).
A widely expressed betaIII spectrin associated with Golgi and cytoplasmic vesicles.
Proc. Natl. Acad. Sci. USA
95
,
14158
14163
Viel
A.
,
Branton
D.
(
1996
).
Spectrin: on the path from structure to function.
Curr. Opin. Cell Biol
8
,
49
55
Wechsler
A.
,
Teichberg
V. I.
(
1998
).
Brain spectrin binding to the NMDA receptor is regulated by phosphorylation, calcium and calmodulin.
EMBO J
17
,
3931
3939
Winkelmann
J. C.
,
Costa
F. F.
,
Linzie
B. L.
,
Forget
B. G.
(
1990
).
Beta spectrin in human skeletal muscle. Tissue-specific differential processing of 3beta spectrin pre-mRNA generates a beta spectrin isoform with a unique carboxyl terminus.
J. Biol. Chem
265
,
20449
20454
Winkelmann
J. C.
,
Costa
F. F.
,
Linzie
B. L.
,
Forget
B. G.
(
1990
).
-spectrin in human skeletal muscle—tissue-specific differential processing of 3 -spectrin pre-messenger RNA generates a-spectrin isoform with a unique carboxyl terminus.
J. Biol. Chem
265
,
20449
20454
Winkelmann
J. C.
,
Forget
B. G.
(
1993
).
Erythroid and nonerythroid spectrins.
Blood
81
,
3173
3185
Winkelmann
J. C.
,
Leto
T. L.
,
Watkins
P. C.
,
Eddy
R.
,
Shows
T. B.
,
Linnenbach
A. J.
,
Sahr
K. E.
,
Kathuria
N.
,
Marchesi
V. T.
,
Forget
B. G.
(
1988
).
Molecular cloning of the cDNA for human erythrocyte beta-spectrin.
Blood
72
,
328
334
Wood
S. J.
,
Slater
C. R.
(
1998
).
beta-Spectrin is colocalized with both voltage-gated sodium channels and ankyrinG at the adult rat neuromuscular junction.
J. Cell Biol
140
,
675
684
Zhou
D.
,
Ursitti
J. A.
,
Bloch
R. J.
(
1998
).
Developmental expression of spectrins in rat skeletal muscle.
Mol. Biol. Cell
9
,
47
61
This content is only available via PDF.