Although the traditional role of clathrin has been in vesicle trafficking and the internalization of receptors, a novel role in cytokinesis was recently revealed in an analysis of a clathrin-minus Dictyostelium mutant (chc(-)). chc(-) cells grown in suspension were demonstrated to be defective in assembling myosin II into a normal contractile ring. To test whether this defect reflected a more general one of cytoskeletal dysfunction, chc(-) cells were analyzed for cell polarity, pseudopod formation, uropod stability, cell locomotion, chemotaxis, cytoskeletal organization and vesicle movement. chc(-) cells crawled, chemotaxed, localized F-actin in pseudopods, organized their microtubule cytoskeleton in a relatively normal fashion and exhibited normal vesicle dynamics. Although chc(-) cells extended pseudopods from the anterior half of the cell with the same frequency as normal chc(+) cells, they extended pseudopods at twice the normal frequency from the posterior half of the cell. The uropods of chc(-) cells also exhibited spatial instability. These defects resulted in an increase in roundness, a reduction in polarity, a reduction in velocity, a dramatic increase in turning, a high frequency of 180 degrees direction reversals and a decrease in the efficiency of chemotaxis. All defects were reversed in a rescued strain. These results are the first to suggest a novel role for clathrin in cell polarity, pseudopod formation, uropod stability and locomotion. It is hypothesized that clathrin functions to suppress pseudopod formation and to stabilize the uropod in the posterior half of a crawling cell, two behavioral characteristics that are essential for the maintenance of cellular polarity, efficient locomotion and efficient chemotaxis.

Alcantara
F.
,
Monk
M.
(
1974
).
Signal propagation in the cellular slime mould Dictyostelium discoideum.
J. Gen. Microbiol
85
,
321
324
Altankov
G.
,
Grinnell
F.
(
1993
).
Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading.
J. Cell Biol
120
,
1449
1459
Altankov
G.
,
Grinnell
F.
(
1995
).
Fibronectin receptor internalization and AP-2 complex reorganization in potassium-depleted fibroblasts.
Exp. Cell Res
216
,
299
309
Bretscher
M. S.
(
1984
).
Endocytosis: relation to capping and cell locomotion.
Science
224
,
681
686
Bretscher
M. S.
(
1988
).
Fibroblasts on the move.
J. Cell Biol
106
,
235
237
Brodsky
F. M.
(
1988
).
Living with clathrin: its role in intracellular membrane traffic.
Science
242
,
1396
1402
Cocucci
S.
,
Sussman
M.
(
1970
).
RNA in cytoplasmic and nuclear fractions of cellular slime mold amebae.
J. Cell Biol
45
,
399
407
Cox
D.
,
Condeelis
J.
,
Wessels
D.
,
Soll
D. R.
,
Kern
H.
,
Knecht
D. A.
(
1992
).
Targeted disruption of the ABP-120 gene leads to cells with altered motility.
J. Cell Biol
116
,
943
955
Cox
D.
,
Wessels
D.
,
Soll
D. R.
,
Hartwig
J.
,
Condeelis
J.
(
1996
).
Re-expression of ABP-120 rescues cytoskeletal, motility and phagocytosisdefects of ABP-120 Dictyostelium mutants.
Mol. Biol. Cell
7
,
803
823
Eckert
B. S.
,
Lazarides
E.
(
1978
).
Localization of actin in Dictyostelium amoebas by immunofluorescence.
J. Cell Biol
77
,
714
721
Egelhoff
T. T.
,
Naismith
T. V.
,
Brozovich
F. V.
(
1996
).
Myosin-based cortical tension in Dictyostelium resolved into heavy and light chain-regulated components.
J. Muscle Res. Cell Motil
17
,
269
274
Escalante
R.
,
Wessels
D.
,
Loomis
W. F.
,
Soll
D. R.
(
1997
).
Chemotaxis to cAMP and slug migration in Dictyostelium both depend on MigA, a BTB protein.
Mol. Biol. Cell
8
,
1763
1775
Fukui
Y.
,
DeLozanne
A.
,
Spudich
J. A.
(
1990
).
Structure and function of the cytoskeleton of a Dictyostelium myosin-defective mutant.
J. Cell Biol
110
,
367
378
Goldstein
J. L.
,
Brown
M. S.
,
Anderson
G. W.
,
Russell
D. W.
,
Schneider
W. J.
(
1985
).
Receptor-mediated enocytosis: concepts emerging from the LDL receptor system.
Annu. Rev. Cell. Biol
1
,
1
39
Goodman
O. B.
Jr.
,
Krupnick
J. G.
,
Santini
F.
,
Gurevich
V. V.
,
Penn
R. B.
,
Gagnon
A. W.
,
Keen
J. H.
,
Benovic
J. L.
(
1996
).
Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta 2-adrenergic receptor.
Nature
383
,
447
450
Lawson
M. A.
,
Maxfield
F. R.
(
1995
).
CA2+-and calcineurin-dependent recycling of integrin to the front of migrating neutrophils.
Nature
373
,
75
79
Murray
J.
,
Vawter-Hugart
H.
,
Voss
E.
,
Soll
D. R.
(
1992
).
A three-dimensional motility cycle in leukocytes.
Cell Motil. Cytoskel
22
,
211
223
Nabi
I.
(
1999
).
The polarization of the motile cell.
J. Cell Sci
112
,
1803
1811
Niswonger
M. L.
,
O'Halloran
T. J.
(
1997
).
A novel role for clathrin in cytokinesis.
Proc. Nat. Acad. Sci. USA
94
,
8575
8578
Pasternak
C.
,
Spudich
J. A.
,
Elson
E. C.
(
1989
).
Capping of surface receptors and concomittant cortical tension are generated by conventional myosin.
Nature
341
,
549
551
Pishvaee
B.
,
Payne
G.
(
1998
).
Clathrin coats-threads laid bare.
Cell
95
,
443
446
Regen
C. M.
,
Horwitz
A. F.
(
1992
).
Dynamics of integrin-mediated adhesive contacts in motile fibroblasts.
J. Cell Biol
119
,
1347
1359
Robinson
M. S.
,
Watts
C.
,
Zerial
M.
(
1996
).
Membrane dynamics in endocytosis.
Cell
84
,
13
21
Roettger
B. F.
,
Rentsch
R. U.
,
Pinon
D.
,
Hollicky
E.
,
Hadac
E.
,
Larkin
J. M.
,
Miller
L. J.
(
1995
).
Dual pathways of internationalization of the cholecystokinin receptor.
J. Cell Biol
128
,
1209
1041
Sameshima
M.
(
1985
).
The orientation of nucleus, nucleus-associated body and protruding nucleolus in aggregating Dictyostelium discoideum.
Exp. Cell Res
156
,
341
350
Schmid
S.
(
1997
).
Clathrin-coated vesicle formation and protein sorting: an integrated process.
Annu. Rev. Biochem
66
,
511
548
Sheldon
E.
,
Knecht
D.
(
1996
).
Dictyostelium cell shape generation requires myosin II.
Cell Motil. Cytoskel
35
,
59
67
Shutt
D.
,
Wessels
D.
,
Chandrasekhar
A.
,
Luna
B.
,
Hitt
A.
,
Soll
D. R.
(
1995
).
Ponticulin plays a role in the spatial stabilization of pseudopods.
J. Cell Biol
131
,
1495
1506
Shutt
D. C.
,
Jenkins
L. M.
,
Daniels
K.
,
Kennedy
R.
,
Stapleton
J.
,
Soll
D. R.
(
1998
).
T cell syncytia induced by HIV release T cell chemoattractants: demonstration with a newly developed single cell chemotaxis.
J. Cell Sci
111
,
99
109
Soll
D. R.
(
1979
).
Timers in developing systems.
Science
203
,
841
849
Soll
D. R.
,
Wessels
D.
,
Murray
J.
,
Vawter
H.
,
Voss
E.
,
Bublitz
A.
(
1990
).
The effects of cAMP and the role of myosin in vesicle movement in Dictyostelium.
Dev. Genet
11
,
341
353
Soll
D. R.
(
1995
).
The use of computers in understanding how cells crawl.
Int. Rev. Cytol
163
,
43
104
Soll
D. R.
(
1999
).
3D reconstruction and motion analysis of the surface and internal architecture of live, crawling cells: 3D-DIAS.
Comp. Med. Imag. Graph
23
,
3
14
Spudich
J. A.
(
1989
).
In pursuit of myosin function.
Cell Reg
1
,
1
11
Stites
J.
,
Wessels
D.
,
Uhl
A.
,
Egelhoff
T. E.
,
Shutt
D.
,
Soll
D. R.
(
1998
).
Interpreting the role of myosin heavy chain (MHC) phosphorylation through a computer-assisted behavioral analysis of a Dictyostelium mutant which cannot phosphorylate the MHC tail region.
Cell Motil. Cytoskel
39
,
31
51
Sylwester
A.
,
Shutt
D.
,
Wessels
D.
,
Stapleton
J. T.
,
Stites
J.
,
Kennedy
R.
,
Soll
D. R.
(
1995
).
T cells and HIV-induced T cell syncytia exhibit the motility cycle.
J. Leuk. Biol
57
,
643
650
Tan
P. K.
,
Davis
N. G.
,
Sprague
G. F.
,
Payne
G. S.
(
1993
).
Pheromones in yeast.
J. Cell Biol
123
,
1701
1716
Titus
M.
,
Wessels
D.
,
Spudich
J.
,
Soll
D. R.
(
1992
).
Theunconventional myosin encoded by the myo A gene plays a role in Dictyostelium motility.
Mol. Biol. Cell
4
,
233
246
Tomchik
S. J.
,
Devreotes
P. N.
(
1981
).
cAMP waved in Dictyostelium discoideum: Demonstration by an isotope dilution fluorography technique.
Science
212
,
443
446
Varnum
B.
,
Edwards
K.
,
Soll
D. R.
(
1985
).
Dictyostelium amoebae alter motility differently in response to increasing versus decreasing temporal gradients of cAMP.
J. Cell Biol
101
,
1
5
Varnum
B.
,
Edwards
K.
,
Soll
D. R.
(
1986
).
The developmental regulation of single cell motility in Dictyostelium discoideum.
Dev. Biol
113
,
218
227
Varnum-Finney
B.
,
Edwards
K.
,
Voss
E.
,
Soll
D. R.
(
1987
).
Amoebae of Dictyostelium discoideum respond to and increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in amoeboid chemotaxis.
Cell Motil. Cytoskel
8
,
7
17
Varnum-Finney
B.
,
Voss
E.
,
Soll
D. R.
(
1987
).
Frequency and orientation of pseudopod formation of Dictyostelium discoideum amoebae chemotaxing in a spatial gradient: Further evidence for a temporal mechanism.
Cell Motil. Cytoskel
8
,
18
26
Wessels
D.
,
Soll
D. R.
,
Knecht
D.
,
Loomis
W. F.
,
DeLozanne
A.
,
Spudich
J.
(
1988
).
Cell Motility and chemotaxis in Dictyostelium amoebae lacking myosin heavy chain.
Dev. Biol
128
,
164
177
Wessels
D.
,
Soll
D. R.
(
1990
).
Myosin II heavy chain null mutant of Dictyostelium exhibits defective intracellular vesicle movement.
J. Cell Biol
111
,
1137
1148
Wessels
D.
,
Murray
J.
,
Jung
G.
,
Hammer
J.
,
Soll
D. R.
(
1991
).
Myosin IB null mutant of Dictyostelium exhibits abnormalities in motility.
Cell Motil. Cytoskel
20
,
301
315
Wessels
D.
,
Murray
J.
,
Soll
D. R.
(
1992
).
The complex behavior cycle of chemotaxing Dictyostelium amoeba is regulated primarily by the temporal dynamics of the natural wave.
Cell Motil. Cytoskel
23
,
145
156
Wessels
D.
,
Titus
M.
,
Soll
D. R.
(
1996
).
A Dictyostelium myosin I plays a crucial role in regulating the frequency of pseudopods formed on the substratum.
Cell Motil. Cytoskel
33
,
64
79
Wessels
D.
,
Voss
E.
,
Von Bergen
N.
,
Burns
R.
,
Stites
J.
,
Soll
D. R.
(
1998
).
A computer-assisted system for reconstructing and interpreting in three dimensions the relationships of the cell surface, the nucleus and pseudopods in living cells.
Cell Motil. Cytoskel
41
,
225
246
Yumura
S.
,
Mori
H.
,
Fukui
Y.
(
1984
).
Localization of actin and myosin for the study of amoeboid movement in Dictyostelium using improved immunofluorescence.
J. Cell Biol
99
,
898
899
Zigmond
S.
(
1977
).
The ability of polymorphonuclear leukocytes to orient in grandients of chemotactic factor.
J. Cell Biol
75
,
606
616
This content is only available via PDF.