In endothelial cells, a bolus of hydrogen peroxide (H2O2) or oxygen metabolites generated by hypoxanthine-xanthine oxidase (HX-XO) increased the mitochondrial calcium concentration [Ca2+]m. Both agents caused a biphasic increase in [Ca2+]m which was preceded by a rise in cytosolic free calcium concentration [Ca2+]c (18 and 6 seconds for H2O2 and HX-XO, respectively). The peak and plateau elevations of [Ca2+] were consistently higher in the mitochondrial matrix than in the cytosol. In Ca2+-free/EGTA medium, the plateau phase of elevated [Ca2+] evoked by H2O2 due to capacitative Ca2+ influx was abolished in the cytosol, but was maintained in the mitochondria. In contrast to H2O2 and HX-XO, ATP which binds the P2Y purinoceptors induced an increase in [Ca2+]m that was similar to that of [Ca2+]c. When cells were first stimulated with inositol 1,4, 5-trisphosphate-generating agonists or the Ca2+-ATPase inhibitor cyclopiazonic acid (CPA), subsequent addition of H2O2 did not affect [Ca2+]c, but still caused an elevation of [Ca2+]m. Moreover, the specific inhibitor of the mitochondrial Ca2+/Na+ exchanger, 7-chloro-3,5-dihydro-5-phenyl-1H-4.1-benzothiazepine-2-on (CGP37157), did not potentiate the effects of H2O2 and HX-XO on [Ca2+]m, while causing a marked increase in the peak [Ca2+]m and a significant attenuation of the rate of [Ca2+]m efflux upon addition of histamine or CPA. In permeabilized cells, H2O2 mimicked the effects of CGP37157 causing an increase in the basal level of matrix free Ca2+ and decreased efflux. Dissipation of the electrochemical proton gradient by carbonylcyanide p-(trifluoromethoxy) phenylhydrazone (FCCP), and blocade of the Ca2+ uptake by ruthenium red prevented [Ca2+]m increases evoked by H2O2. These results demonstrate that the H2O2-induced elevation in [Ca2+]m results from a transfer of Ca2+ secondary to increased [Ca2+]c, and an inhibition of the Ca2+/Na+ electroneutral exchanger of the mitochondria.

REFERENCES

Allen
S. P.
,
Darley-Usmar
V. M.
,
McCormack
J. G.
,
Stone
D.
(
1993
).
Changes in mitochondrial matrix free calcium in perfused rat hearts subjected to hypoxia-reoxygenation.
J. Mol. Cell. Cardiol
25
,
949
958
Brini
M.
,
Marsault
R.
,
Bastianutto
C.
,
Alvarez
J.
,
Pozzan
T.
,
Rizzuto
R.
(
1995
).
Transfected aequorin in the measurement of cytosolic Ca2+concentration ([Ca2+]c). A critical evaluation.
J. Biol. Chem
270
,
9896
9903
Conant
A. R.
,
Fisher
M. J.
,
McLennan
A. G.
,
Simpson
A. W.
(
1998
).
Characterization of the P2 receptors on the human umbilical vein endothelial cell line ECV304.
Br. J. Pharmacol
125
,
357
364
Cossarizza
A.
,
Baccarani-Contri
M.
,
Kalashnikova
G.
,
Franceschi
C.
(
1993
).
A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5,6,6 -tetrachloro-1,1,3,3 -tetraethylbenzimidazol-carbocyanine iodide (JC-1).
Biochem. Biophys. Res. Commun
197
,
40
45
Cox
D. A.
,
Matlib
M. A.
(
1993
).
A role for the mitochondrial Na+/Ca2+exchanger in the regulation of oxidative phosphorylation in isolated heart mitochondria.
J. Biol. Chem
268
,
938
947
Cox
D. A.
,
Matlib
M. A.
(
1993
).
Modulation of intramitochondrial free Ca2+ concentration by antagonists of Na+/Ca2+ exchange.
Trends Biochem. Sci
14
,
408
413
Crompton
M.
,
Ellinger
H.
,
Costa
A.
(
1988
).
Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress.
Biochem. J
255
,
357
360
Doan
T. N.
,
Gentry
D. L.
,
Taylor
A. A.
,
Elliott
J. J.
(
1994
).
Hydrogen peroxide activates agonist-sensitive Ca2+-flux pathways in canine venous endothelial cells.
Biochem J
297
,
209
215
Dreher
D.
,
Jornot
L.
,
Junod
A. F.
(
1995
).
Effects of hypoxanthine-xanthine oxidase on Ca2+stores and protein synthesis in human endothelial cells.
Circ. Res
76
,
388
395
Fagian
M. M.
,
Pereira-da-Silva
L.
,
Martins
I. S.
,
Vercesi
A. E.
(
1990
).
Membrane protein thiol cross-linking associated with the permeabilization of the inner mitochondrial membrane by Ca2+plus prooxidants.
J. Biol. Chem
265
,
19955
19960
Fasolato
C.
,
Zottini
M.
,
Clementi
E.
,
Zacchetti
D.
,
Meldolesi
J.
,
Pozzan
T.
(
1991
).
Intracellular Ca2+pools in PC12 cells. Three intracellular pools are distinguished by their turnover and mechanisms of Ca2+accumulation, storage, and release.
J. Biol. Chem
266
,
20159
20167
Gunter
T. E.
,
Pfeiffer
D. R.
(
1990
).
Mechanisms by which mitochondria transport calcium.
Am. J. Physiol
258
,
755
–.
Gunter
T. E.
,
Gunter
K. K.
,
Sheu
S. S.
,
Gavin
C. E.
(
1994
).
Mitochondrial calcium transport: physiological and pathological relevance.
Am. J. Physiol
267
,
313
–.
Hyslop
P. A.
,
Hinshaw
D. B.
,
Halsey
W. A.
,
Schraufstätter
U. I.
,
Sauerheber
R. D.
,
Spragg
R. G.
,
Jackson
J. H.
,
Cochrane
C. G.
(
1988
).
Mechanisms of oxidant-mediated cell injury. The glycolytic andmitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide.
J. Biol. Chem
263
,
1665
1675
Junod
A. F.
,
Jornot
L.
,
Petersen
H.
(
1989
).
Differential effects of hyperoxia and hydrogen peroxide on DNA damage, polyadenosine diphosphate-ribose polymerase activity and nicotinamide adenine dinucleotide and adenosine triphosphate contents in cultured endothelial cells and fibroblasts.
J. Cell. Physiol
140
,
177
185
Karmazyn
M.
(
1991
).
Ischemic and reperfusion injury in the heart. Cellular mechanisms and pharmacological interventions.
Can. J. Physiol. Pharmacol
69
,
719
730
Kass
G. E. N.
,
Juedes
M. J.
,
Orrenius
S.
(
1992
).
Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+cycling in cytotoxicity.
Biochem. Pharmacol
44
,
1995
2003
Kloner
R. A.
,
Przyklenk
K.
,
Whittaker
P.
(
1989
).
Deleterious effects of oxygen radicals in ischemia/reperfusion. Resolved and unresolved issues.
Circulation
80
,
1115
1127
Lawrie
A. M.
,
Rizzuto
R.
,
Pozzan
T.
,
Simpson
A. W. M.
(
1996
).
A role for calcium influx in the regulation of mitochondrial calcium in endothelial cells.
J. Biol. Chem
271
,
10753
10759
Maechler
P.
,
Kennedy
E. D.
,
Wang
H.
,
Wollheim
C. B.
(
1998
).
Desensitization of mitochondrial Ca2+and insulin secretion responses in the-cell.
J. Biol. Chem
273
,
20770
20778
Nieminen
A. L.
,
Saylor
A. K.
,
Tesfai
S. A.
,
Herman
B.
,
Lemasters
J. J.
(
1995
).
Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide.
Biochem. J
307
,
99
106
Petit
P. X.
,
Susin
S. A.
,
Zamzami
N.
,
Mignotte
B.
,
Kroemer
G.
(
1996
).
Mitochondria and programmed cell death: back to the future.
FEBS Lett
396
,
7
13
Richter
C.
,
Kass
G. E. N.
(
1991
).
Oxidative stress in mitochondria: its relationship to cellular Ca2+homeostasis, cell death, proliferation and differentiation.
Chem. Biol. Interactions
77
,
1
23
Richter
C.
,
Schweizer
M.
,
Cossarizza
A.
,
Franceschi
C.
(
1996
).
Control of apoptosis by the cellular ATP level.
FEBS Lett
378
,
107
110
Rizzuto
R.
,
Simpson
A. W. M.
,
Brini
M.
,
Pozzan
T.
(
1992
).
Rapid changes of mitochondrial Ca2+revealed by specifically targeted recombinant aequorin.
Nature
358
,
325
327
Rizzuto
R.
,
Brini
M.
,
Murgia
M.
,
Pozzan
T.
(
1993
).
Microdomains with high Ca2+close to IP3-sensitive channels that are sensed by neighboring mitochondria.
Science
262
,
744
747
Rizzuto
R.
,
Bastianutto
C.
,
Brini
M.
,
Murgia
M.
,
Pozzan
T.
(
1994
).
Mitochondrial Ca2+homeostasis in intact cells.
J. Cell Biol
126
,
1183
1194
Schlegel
J.
,
Schweizer
M.
,
Richter
C.
(
1992
).
‘Pore’ formation is not required for the hydroperoxide-induced Ca2+release from rat liver mitochondria.
Biochem. J
285
,
65
69
Schraufstätter
U. I.
,
Hinshaw
D. B.
,
Hyslop
P. A.
,
Spragg
R. G.
,
Cochrane
C. G.
(
1986
).
Oxidant injury of cells. DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide.
J. Clin. Invest
77
,
1312
1320
Shorte
S. L.
,
Collingridge
G. L.
,
Randall
A. D.
,
Chappell
J. B.
,
Schofield
J. G.
(
1991
).
Ammonium ions mobilize calcium from an internal pool which is insensitive to TRH and ionomycin in bovine anterior pituitary cells.
Cell Calcium
12
,
301
312
Shoshan
V.
,
MacLennan
D. H.
,
Wood
D. S.
(
1981
).
A proton gradient controls a calcium-release channel in sarcoplasmic reticulum.
Proc. Nat. Acad. Sci. USA
78
,
4828
4832
Smiley
S. T.
,
Reers
M.
,
Mottola-Hartshorn
C.
,
Lin
M.
,
Chen
A.
,
Smith
T. W.
,
Steele
G.
,
Chen
L. B.
(
1991
).
Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1.
Proc. Nat. Acad. Sci. USA
88
,
3671
3675
Takahashi
K.
,
Sawasaki
Y.
,
Hata
J. I.
,
Mukai
K.
,
Goto
T.
(
1990
).
Spontaneous transformation and immortalization of human endothelial cells. In Vitro Cell.
Dev. Biol
25
,
265
274
Vlessis
A. A.
,
Mela-Riker
L.
(
1989
).
Potential role of mitochondrial calcium metabolism during reperfusion injury.
Am. J. Physiol
256
,
1196
–.
Zoratti
M.
,
Szabò
I.
(
1995
).
The mitochondrial permeability transition.
Biochim. Biophys. Acta
1241
,
139
176
This content is only available via PDF.