The capacities of different transforming growth factor-(beta) (TGF-(beta)) superfamily members to drive epithelial to mesenchymal transdifferentiation of the murine mammary epithelial cell line NMuMG were investigated. TGF-(beta)1, but not activin A or osteogenic protein-1 (OP-1)/bone morphogenetic protein-7 (BMP-7), was able to induce morphological transformation of NMuMG cells as shown by reorganisation of the actin cytoskeleton and relocalisation/downregulation of E-cadherin and (beta)-catenin, an effect that was abrogated by the more general serine/threonine kinase and protein kinase C inhibitor, staurosporine. TGF-(beta)1 bound to TGF-(beta) type I receptor (T(beta)R-I)/ALK-5 and T(beta)R-II, but not to activin type I receptor (ActR-I)/ALK-2. Activin A bound to ActR-IB/ALK-4 and ActR-II, and BMP-7 bound to ActR-I/ALK-2, BMP type I receptor (BMPR-I)/ALK-3, ActR-II and BMPR-II. TGF-(beta)1 and BMP-7 activated the Smad-binding element (SBE)(4) promoter with equal potency, whereas activin A had no effect. Transfection of constitutively active (CA)-ALK-4 activated the 3TP promoter to the same extent as TGF-(beta)1 and CA-ALK-5 indicating that activin signalling downstream of type I receptors was functional in NMuMG cells. In agreement with this, activin A induced low levels of plasminogen activator inhibitor I expression compared to the high induction by TGF-(beta)1. In contrast to activin A and BMP-7, TGF-(beta)1 strongly induced Smad2 phosphorylation. Consistent with these findings, TGF-(beta)1 induced the nuclear accumulation of Smad2 and/or Smad3. In addition, NMuMG cells transiently infected with adenoviral vectors expressing high level CA-ALK-5 exhibited full transdifferentiation. On the other hand, infections with low level CA-ALK-5, which alone did not result in transdifferentiation, together with Smad2 and Smad4, or with Smad3 and Smad4 led to transdifferentiation. In conclusion, TGF-(beta)1 signals potently and passes the activation threshold to evoke NMuMG cell transdifferentiation. The TGF-(beta) type I receptor (ALK-5) and its effector Smad proteins mediate the epithelial to mesenchymal transition. Activin A does not induce mesenchymal transformation, presumably because the number of activin receptors is limited, while BMP-7-initiated signalling cannot mediate transdifferentiation.

Chen
Y.-G.
,
Hata
A.
,
Lo
R. S.
,
Wotton
D.
,
Shi
Y.
,
Pavletich
N.
,
Massague
J.
(
1998
).
Determinants of specificity in TGF-signal transduction.
Genes Dev
12
,
2144
2152
Chen
Y.-G.
,
Massague
J.
(
1999
).
Smad1 recognition and activation by the ALK1 group of transforming growth factor-family receptors.
J. Biol. Chem
274
,
3672
3677
Cui
W.
,
Fowlis
D. J.
,
Bryson
S.
,
Duffie
E.
,
Ireland
H.
,
Balmain
A.
,
Akhurst
R. J.
(
1996
).
TGF1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice.
Cell
86
,
531
542
Caulin
C.
,
Scholl
F. G.
,
Frontelo
P.
,
Gamallo
C.
,
Quintanilla
M.
(
1995
).
Chronic exposure of cultured transformed epidermal cells to transforming growth factor1 induces an epithelial-mesenchymal transdifferentiation and a spindle tumoral phenotype.
Cell Growth Differ
6
,
1027
1035
Feng
X. H.
,
Derynck
R.
(
1997
).
A kinase subdomain of transforming growth factor-(TGF-) type I receptor determines the TGF-intracellular signaling activity.
EMBO J
16
,
3912
3922
Franzen
P.
,
ten Dijke
P.
,
Ichijo
H.
,
Yamashita
H.
,
Schulz
P.
,
Heldin
C.-H.
,
Miyazono
K.
(
1993
).
Cloning of a TGF beta type I receptor that forms a heteromeric complex with the TGF beta type II receptor.
Cell
75
,
681
692
Frolik
C. A.
,
Wakefield
L. M.
,
Smith
D. M.
,
Sporn
M. B.
(
1984
).
Characterization of a membrane receptor for transforming growth factor-in normal rat kidney fibroblasts.
J. Biol. Chem
25
,
10995
11000
Hata
A.
,
Shi
Y.
,
Massague
J.
(
1998
).
TGF-signaling and cancer: structural and functional consequences of mutations in Smads.
Mol. Med. Today
4
,
257
262
Heine
U. I.
,
Munoz
E. F.
,
Flanders
K. C.
,
Roberts
A. B.
,
Sporn
M. B.
(
1990
).
Colocalization of TGF-beta 1 and collagen I and III, fibronectin and glycosaminoglycans during lung branching morphogenesis.
Development
109
,
29
36
Heldin
C.-H.
,
Miyazono
K.
,
ten Dijke
P.
(
1997
).
TGF-signalling from cell membrane to nucleus through SMAD proteins.
Nature
390
,
465
471
Hogan
B. L. M.
,
Yingling
J. M.
(
1998
).
Epithelial/mesenchymal interactions and branching morphogenesis of the lung.
Curr. Opin. Genet. Dev
8
,
481
486
Hogan
B. L. M.
(
1999
).
Morphogenesis.
Cell
96
,
225
233
Jonk
L. J. C.
,
Itoh
S.
,
Heldin
C.-H.
,
ten Dijke
P.
,
Kruijer
W.
(
1998
).
Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-, activin and bone morphogenetic protein-inducible enhancer.
J. Biol. Chem
273
,
21145
21152
Kingsley
D.
(
1994
).
The TGF-superfamily: new members, new receptors and new genetic tests of function in different organisms.
Genes Dev
8
,
133
146
Labbe
E.
,
Silvestri
C.
,
Hoodless
P. A.
,
Wrana
J. L.
,
Attisano
L.
(
1998
).
Smad2 and Smad3 positively and negatively regulate TGF-dependent transcription through the forkhead DNA-binding protein FAST2.
Mol. Cell
2
,
109
120
Link
B. A.
,
Nishi
R.
(
1997
).
Opposing effects of activin A and follistatin on developing skeletal muscle cells.
Exp. Cell. Res
233
,
350
362
Macías-Silva
M.
,
Hoodless
P. A.
,
Tang
S. J.
,
Buchwald
M.
,
Wrana
J. L.
(
1998
).
Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2.
J. Biol. Chem
273
,
25628
25636
Massague
J.
(
1998
).
TGF-signal transduction.
Annu. Rev. Biochem
67
,
753
791
Miettinen
P. J.
,
Ebner
R.
,
Lopez
A. R.
,
Derynck
R.
(
1994
).
TGF-induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.
J. Cell Biol
127
,
2021
2036
Miyake
S.
,
Makimura
M.
,
Kanagae
Y.
,
Harada
S.
,
Sato
Y.
,
Takamori
K.
,
Tokuda
C.
,
Saito
I.
(
1996
).
Efficient generation of recombinant adenoviruses using adenovirus DNA-terminal protein complex and a cosmidbearing the full length viral genome.
Proc. Nat. Acad. Sci. USA
93
,
1320
1324
Moustakas
A.
,
Stournaras
C.
(
1999
).
Regulation of actin organisation by TGF-in H-ras transformed fibroblasts.
J. Cell Sci
112
,
1169
1179
Nakao
A.
,
Imamura
T.
,
Souchelnytskyi
S.
,
Kawabata
M.
,
Ishisaki
A.
,
Oeda
E.
,
Tamaki
K.
,
Hanai
J.-I.
,
Heldin
C.-H.
,
Miyazono
K.
,
ten Dijke
P.
(
1997
).
TGF-receptor-mediated signalling through Smad2, Smad3, and Smad4.
EMBO J
16
,
5353
5362
Nishihara
T.
,
Okahashi
N.
,
Ueda
N.
(
1993
).
Activin A induces apoptotic cell death.
Biochem. Biophys. Res. Commun
197
,
985
991
Oft
M.
,
Peli
J.
,
Rudaz
C.
,
Schwarz
H.
,
Beug
H.
,
Reichmann
E.
(
1996
).
TGF-1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells.
Genes Dev
10
,
2462
2477
Oft
M.
,
Heider
K. H.
,
Beug
H.
(
1998
).
TGFsignaling is necessary for carcinoma cell invasiveness and metastasis.
Curr. Biol
8
,
1243
1252
Ohtsuki
M.
,
Massague
J.
(
1992
).
Evidence for the involvement of protein kinase activity in transforming growth factor-signal transduction.
Mol. Cell. Biol
12
,
261
265
Persson
U.
,
Izumi
H.
,
Souchelnytskyi
S.
,
Itoh
S.
,
Grimsby
S.
,
Engström
U.
,
Heldin
C.-H.
,
Funa
K.
,
ten Dijke
P.
(
1998
).
The L45 loop in type I receptors for TGF-family members is a critical determinant in specifying Smad isoform activation.
FEBS Lett
434
,
83
87
Piek
E.
,
Franzen
P.
,
Heldin
C.-H.
,
ten Dijke
P.
(
1997
).
Characterization of a 60-kDa cell surface-associated transforming growth factor-binding protein that can interfere with transforming growth factor- receptor binding.
J. Cell. Physiol
173
,
447
459
Piek
E.
,
Westermark
U.
,
Kastemar
M.
,
Heldin
C.-H.
,
van Zoelen
E. J. J.
,
Nister
M.
,
ten Dijke
P.
(
1999
).
Expression of transforming growth factor (TGF)-receptors and Smad proteins in glioblastoma cell lines with distinct responses to TGF- 1.
Int. J. Cancer
80
,
756
763
Portella
G.
,
Cumming
S. A.
,
Liddell
J.
,
Cui
W.
,
Ireland
H.
,
Akhurst
R. J.
,
Balmain
A.
(
1998
).
Transforming growth factoris essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion.
Cell Growth Differ
9
,
393
404
Qui
R. G.
,
Chen
J.
,
McCormick
F.
,
Symons
M.
(
1995
).
A role for Rho in Ras transformation.
Proc. Nat. Acad. Sci. USA
92
,
11781
11785
Qui
R. G.
,
Abo
A.
,
McCormick
F.
,
Symons
M.
(
1997
).
Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation.
Mol. Cell. Biol
17
,
3449
3458
Robinson
S. D.
,
Silberstein
G. B.
,
Roberts
A. B.
,
Flanders
K. C.
,
Daniel
C. W.
(
1991
).
Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development.
Development
113
,
867
878
Rogers
S. A.
,
Ryan
G.
,
Purchio
A. F.
,
Hammerman
M. R.
(
1993
).
Metanephric transforming growth factor-1 regulates nephrogenesis in vitro.
Am. J. Physiol
264
,
996
1002
Rosenzweig
B. L.
,
Imamura
T.
,
Okadome
T.
,
Cox
G. N.
,
Yamashita
H.
,
ten Dijke
P.
,
Heldin
C.-H.
,
Miyazono
K.
(
1995
).
Cloning and characterization of a human type II receptor for bone morphogenetic proteins.
Proc. Nat. Acad. Sci. USA
92
,
7632
7636
Seidel-Dugan
C.
,
Meyer
B. E.
,
Thomas
S. M.
,
Brugge
J. S.
(
1992
).
Effects of SH2 and SH3 deletions on the functional activities of wild-type and transforming variants of c-Src.
Mol. Cell. Biol
12
,
1835
1845
Silberstein
G. B.
,
Daniel
C. W.
(
1987
).
Reversible inhibition of mammary gland growth by transforming growth factor-1.
Science
237
,
291
293
ten Dijke
P.
,
Yamashita
H.
,
Ichijo
H.
,
Franzen
P.
,
Laiho
M.
,
Miyazono
K.
,
Heldin
C.-H.
(
1994
).
Characterization of type I receptors for transforming growth factor-and activin.
Science
264
,
101
104
Torii
Y.
,
Hitomi
K.
,
Tsukagoshi
N.
(
1996
).
Synergistic effect of BMP-2 and ascorbate on the phenotypic expression of osteoblastic MC3T3-E1 cells.
Mol. Cell. Biochem
165
,
25
29
Wennström
S.
,
Hawkins
P.
,
Cooke
F.
,
Hara
K.
,
Yonezawa
K.
,
Kasuga
M.
,
Jackson
T.
,
Claesson-Welsh
L.
,
Stephens
L.
(
1994
).
Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling.
Curr. Biol
4
,
385
393
Whitman
M.
(
1998
).
Smads and early developmental signaling by the TGFsuperfamily.
Genes Dev
12
,
2445
2462
Wrana
J. L.
,
Attisano
L.
,
Wieser
R.
,
Ventura
F.
,
Massague
J.
(
1994
).
Mechanism of activation of the TGF-receptor.
Nature
370
,
341
347
Yamashita
H.
,
ten Dijke
P.
,
Huylebroeck
D.
,
Sampath
T. K.
,
Andries
M.
,
Smith
J. C.
,
Heldin
C.-H.
,
Miyazono
K.
(
1995
).
Osteogenic protein-1 binds to activin type II receptors and induces certain activin-like effects.
J. Cell Biol
130
,
217
226
This content is only available via PDF.