Using a newly developed gradient chamber to provide independent measurements of chemokinesis (stimulated motility) and chemotaxis (stimulated motility up a concentration gradient) of individual T-helper cells, it was recently demonstrated that HIV-induced T-cell syncytia release two distinct chemotactic activities that are separable by their rates of diffusion. The molecular masses of the two chemoattractant activities were estimated to be 30 and 120 kDa. The higher molecular mass activity was demonstrated to be the viral glycoprotein gp120. In an attempt to identify the lower molecular mass activity, chemotaxis and chemokinesis of T-helper cells were analyzed in individual concentration gradients of the virally encoded proteins Rev, p24, Tat and Nef. None functioned alone as a chemoattractant, but both Tat and Nef alone functioned as chemokinetic stimulants. When Tat and Nef were used together to generate parallel gradients, they stimulated chemotaxis. Antibody to either Tat or Nef neutralized the lower molecular mass chemotactic activity released by syncytia. The addition of antibody to the CD4 receptor or the addition of soluble CD4 inhibited high molecular mass chemotactic activity but not the low molecular mass chemotactic activity in HIV-induced syncytium-conditioned medium, demonstrating that the former but not the latter activity is mediated through the CD4 receptor. These results identify the combination of Nef and Tat as the lower molecular mass T cell chemoattractant released by HIV-induced syncytia, and provide the first evidence suggesting that parallel concentration gradients of two proteins are necessary for chemotaxis.

Aiken
C.
,
Konner
J.
,
Landau
N. R.
,
Lenburg
M. E.
,
Trono
D.
(
1994
).
Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain.
Cell
76
,
853
864
Albini
A.
,
Errini
S.
,
Benelli
R.
,
Sforzini
S.
,
Giunciuglio
D.
,
Aluigi
M. G.
,
Proudfoot
A. E.
,
Alouani
S.
,
Wells
T. N.
,
Mariani
G.
,
Rabin
R. L.
,
Farber
J. M.
,
Noonan
D. M.
(
1998
).
HIV-1 Tat protein mimicry of chemokines.
Proc. Nat. Acad. Sci. USA
95
,
13151
13158
Arthos
J.
,
Deen
K. C.
,
Chaikin
M. A.
,
Fornwald
J. A.
,
Sathe
G.
,
Sattentau
Q. J.
,
Clapham
P. R.
,
Weiss
R. A.
,
McDougal
J. S.
,
Pietropaolo
C.
,
Axel
R.
,
Truneh
A.
,
Maddon
P. J.
,
Sweet
R. W.
(
1989
).
Identification of the residues in human CD4 critical for the binding of HIV.
Cell
57
,
469
481
Attanasio
R. J. S.
,
Allan
J. S.
,
Anderson
S. A.
,
Chanh
T. C.
,
Kennedy
R. C.
(
1991
).
Anti-idiotypic antibody response to monoclonal anti-CD4 preparations in nonhuman primate species.
J. Immunol
146
,
507
514
Benelli
R.
,
Mortarini
R.
,
Anichini
A.
,
Giunciuglio
D.
,
Noonan
D. M.
,
Montalti
S.
,
Tacchetti
C.
,
Albini
A.
(
1998
).
Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides.
AIDS
12
,
261
268
Bleul
C. C.
,
Farzan
M.
,
Choe
H.
,
Parolin
C.
,
Clark-Lewis
I.
,
Sodroski
J.
,
Springer
T. A.
(
1996
).
The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry.
Nature
382
,
829
833
Bohan
C. A.
,
Kashanchi
F.
,
Ensoli
B.
,
Buonaguro
L.
,
Boris-Lawrie
K.
,
Brady
J. N.
(
1992
).
Analysis of Tat transactivation of human immunodeficiency virus transcription in vitro.
Gene Expr
2
,
391
407
Boyden
S. V.
(
1962
).
The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes.
J. Exp. Med
115
,
453
466
Campbell
J. J.
,
Qin
S.
,
Bacon
K. B.
,
Mackay
C. R.
,
Butcher
E. C.
(
1996
).
Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells.
J. Cell Biol
134
,
255
266
Campioni
D.
,
Corallini
A.
,
Zauli
G.
,
Possati
L.
,
Altavilla
G.
,
Barbanti-Brodano
G.
(
1995
).
HIV type I extracellular Tat protein stimulates growth and protects cells of BK virus/tat transgenic mice from apoptosis.
AIDS Res Hum Retroviruses
11
,
1039
1048
Cruikshank
W. W.
,
Greenstein
J. L.
,
Theodore
A. C.
,
Center
D. M.
(
1991
).
Lymphocyte chemoattractant factor induces CD4-dependent intracytoplasmic signaling in lymphocytes.
J. Immunol
146
,
2928
2934
Dorfman
T.
,
Bukovsky
A.
,
Ohagen
A.
,
Hoglund
S.
,
Gottlinger
H. G.
(
1994
).
Functional domains of the capsid protein of human immunodeficiency virus type 1.
J. Virol
68
,
8180
8187
Foxman
E. F.
,
Campbell
J. J.
,
Butcher
E. C.
(
1997
).
Multistep navigation and the combinatorial control of leukocyte chemotaxis.
J. Cell Biol
139
,
1349
1360
Garcia
J. V.
,
Miller
A. D.
(
1991
).
Serine phosphorylation-independent downregulation of cell-surface CD4 by Nef.
Nature
350
,
508
511
Gelderblom
H. R.
,
Reupke
H. J.
,
Pauli
G.
(
1985
).
Loss of envelope antigens of HTLV-III/LAV, a factor in AIDS pathogenesis?.
Lancet
2
,
1016
1017
Graziani
A.
,
Galimi
F.
,
Medico
E.
,
Cottone
E.
,
Gramaglia
D.
,
Boccoccio
C.
,
Comoglio
P. M.
(
1996
).
The HIV-1 nef protein interferes with phosphatidylinositol 3-kinase activation.
J. Biol. Chem
271
,
6590
6593
Inoue
M.
,
Koga
Y.
,
Djordjijevic
D.
,
Fukuma
T.
,
Reddy
E. P.
,
Yokayama
M. M.
,
Sagawa
K.
(
1993
).
Down-regulation of CD-4 molecules by the expression of Nef: a quantitative analysis of CD4 antigens on the cell surface.
Int. Immunol
5
,
1067
1073
Janossy
G.
,
Pinching
A. J.
,
Bofill
M.
,
Weber
J.
,
McLaughlin
E.
,
Ornstein
M.
,
Ivory
K.
,
Harris
J. R.
,
Favrot
M.
,
Macdonald-Burns
D. C.
(
1985
).
An immunohistological approach to persistentlymphadenopathy and its relevance to AIDS.
Clin. Exp. Immunol
59
,
257
266
Kim
S. Y.
,
Byrn
R.
,
Groopman
J.
,
Baltimore
D.
(
1989
).
Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression.
J. Virol
63
,
3708
3713
Klotman
M. E.
,
Kim
S.
,
Buchbinder
A.
,
DeRossi
A.
,
Baltimore
D.
,
Wong-Staal
F.
(
1991
).
Kinetics of expression of multiply spliced RNA in early human immunodeficiency virus type 1 infection of lymphocytes and monocytes.
Proc. Nat. Acad. Sci. USA
88
,
5011
5015
Kornfeld
H.
,
Cruikshank
W. W.
,
Pyle
S. W.
,
Berman
J. S.
,
Center
D. M.
(
1988
).
Lymphocyte activation by HIV-1 envelope glycoprotein.
Nature
335
,
445
448
Kowolski
M.
,
Potz
J.
,
Basiropour
L.
,
Dorfman
T.
,
Goh
W. C.
,
Terwiliger
E.
,
Dayton
A.
,
Rosen
C.
,
Haseltine
W.
,
Sodroski
J.
(
1987
).
Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1.
Science
237
,
1351
1355
Lafrenie
R. M.
,
Wahl
L. M.
,
Epstein
J. S.
,
Hewlett
I. K.
,
Yamada
K. M.
,
Dhawan
S.
(
1996
).
HIV-1 Tat modulates the function of monocytes and alters their interactions with microvessel endothelial cells. A mechanism of HIV pathogenesis.
J. Immunol
156
,
1638
1645
Lafrenie
R. M.
,
Wahl
L. M.
,
Epstein
J. S.
,
Hewlett
I. K.
,
Yamada
K. M.
,
Dhawan
S.
(
1996
).
HIV-1 Tat protein promotes chemotaxis and invasive behavior by monocytes.
J. Immunol
157
,
974
977
Lauffenberger
D. A.
,
Tranquillo
R. T.
,
Zigmond
S. H.
(
1988
).
Concentration gradients of chemotactic factors in chemotaxis assays.
Meth. Enzymol
162
,
84
101
Lifson
J. D.
,
Feinberg
M. B.
,
Reyes
G. R.
,
Rabin
L.
,
Banapour
B.
,
Chakrabarti
S.
,
Moss
B.
,
Wong-Staal
F.
,
Steimer
K.
,
Engleman
E. G.
(
1986
).
Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein.
Nature
323
,
725
728
Lifson
J. D.
,
Reyes
G. R.
,
McGrath
M. S.
,
Stein
B. S.
,
Engleman
E. G.
(
1986
).
AIDS retrovirus induced cytopathology: Giant cell formation and involvement of CD4 antigen.
Science
232
,
1123
1127
Loetscher
M.
,
Gerber
B.
,
Loetscher
P.
,
Jones
S. A.
,
Piali
L.
,
Clark-Lewis
I.
,
Baggiolini
M.
,
Moser
B.
(
1996
).
Chemokine receptor specific for IP-10 and mig: structure, function and expression in activated T-lymphocytes.
J. Exp. Med
184
,
799
802
McDougal
J. S.
,
Kennedy
M. S.
,
Sligh
J. M.
,
Cort
S. P.
,
Mawle
A.
,
Nicholson
J. K.
(
1986
).
Binding of HTLV-III/LAV to T4+ cells by a complex of the 110K viral protein and the T4 molecule.
Science
231
,
382
385
Mitola
S.
,
Sozzani
S.
,
Luini
W.
,
Primo
L.
,
Borsatti
A.
,
Weich
H.
,
Bussolino
F.
(
1997
).
Tat-human immunodeficiency virus-1 induces human monocyte chemotaxis by activation of vascular endothelial growth factor receptor-1.
Blood
90
,
1365
1372
Modesti
N.
,
Garcia
J.
,
DeBouck
C.
,
Peterlin
M.
,
Gaynor
R.
(
1991
).
Transdominant tat mutants with altercations in the basic domain inhibit HIV-1 gene expression.
New Biol
3
,
759
768
Murphy
S.
,
Sylwester
A.
,
Kennedy
R.
,
Soll
D. R.
(
1995
).
Phagocytosis of individual CD4+cells by HIV-induced T cell syncytia.
AIDS Res. Hum. Retroviruses
11
,
433
442
O'Neill
G. J.
,
Parrott
D. M. V.
(
1977
).
Locomotion of human lymphoid cells. Effect of culture and ConA on T and non-T lymphocytes.
Cell. Immunol
33
,
257
267
Orsini
M. J.
,
Debouck
C. M.
,
Webb
C. L.
,
Lysko
P. G.
(
1996
).
Extracellular human immunodeficiency virus type 1 Tat protein promotes aggregation and adhesion of cerebellar neurons.
J. Neurosci
16
,
2546
2552
Pomerantz
R. J.
,
Seshamma
T.
,
Trono
D.
(
1992
).
Efficient replication of human immunodeficiency virus type 1 requires a threshold level of Rev: potential implications for latency.
J. Virol
66
,
1809
1813
Romero
I. A.
,
Teixeira
A.
,
Strosberg
A. D.
,
Cazaubon
S.
,
Couraud
P. O.
(
1998
).
The HIV-1 Nef protein inhibits extracellular signal-regulated kinase-dependent DNA synthesis in a human astocytic cell line.
J. Neurochem
70
,
778
785
Rosenberg
Y. J.
,
Zack
P. M.
,
White
B. D.
,
Papermaster
S. F.
,
Elkins
W. R.
,
Eddy
G. A.
,
Lewis
M. G.
(
1993
).
Decline in the CD4+ lymphocyte population in the blood of SIV-infected macaques is not reflected in lymph nodes.
AIDS Res. Hum. Retroviruses
9
,
639
646
Sawai
E. T.
,
Baur
A.
,
Struble
H.
,
Peterlin
B. M.
,
Levy
J. A.
,
Cheng-Mayer
C.
(
1994
).
Human immunodeficiency virus type 1 Nef associateswith a cellular serine kinase in T lymphocytes.
Proc. Nat. Acad. Sci. USA
91
,
1539
1543
Schneider
J.
,
Kaaden
O.
,
Copeland
T. D.
,
Orozslan
S.
,
Hunsmann
G.
(
1986
).
Shedding and interspecies type seroreactivity of the envelope glycoprotein gp120 of the human immunodeficiency virus.
J. Gen. Virol
67
,
2533
2538
Selby
M. J.
,
Peterlin
B. M.
(
1990
).
Trans-activation by HIV-1 Tat via a heterologous RNA binding protein.
Cell
62
,
769
776
Shutt
D.
,
Wessels
D.
,
Wagenknecht
K.
,
Chandrasekhar
A.
,
Hitt
A.
,
Luna
E.
,
Soll
D. R.
(
1995
).
Ponticulin plays a role in the positional stabilization of pseudopods.
J. Cell Biol
131
,
1495
1506
Shutt
D. C.
,
Stapleton
J. T.
,
Kennedy
R. C.
,
Soll
D. R.
(
1995
).
HIV-induced syncytia in peripheral blood cell cultures crawl by extending giant pseudopods.
Cell. Immunol
166
,
261
274
Shutt
D. C.
,
Jenkins
L. M.
,
Carolan
E. J.
,
Stapleton
J.
,
Daniels
K. J.
,
Kennedy
R. C.
,
Soll
D. R.
(
1998
).
T cell syncytia induced by HIV release T cell chemoattractants: demonstration with a newly developed single cell chemotaxis chamber.
J. Cell Sci
111
,
99
109
Smith
S. D.
,
Shatsky
M.
,
Cohen
P. S.
,
Warake
R.
,
Link
M. P.
,
Glader
B. E.
(
1984
).
Monoclonal antibody and enzymatic profiles of human malignant T lymphoid cells and derived lines.
Cancer Res
44
,
5657
5660
Soll
D. R.
,
Kennedy
R. C.
(
1994
).
The role of T cell motility and cytoskeletal reorganization in HIV-induced syncytium formation: a perspectus.
AIDS Res. Hum. Retroviruses
10
,
325
327
Soll
D. R.
(
1995
).
The use of computers in understanding how cells crawl.
Int. Rev. Cytol
163
,
43
104
Soll
D. R.
(
1997
).
Researchers in cell motility and the cytoskeleton can play major roles in understanding AIDS.
Cell Motil. Cytoskel
37
,
91
97
Soll
D. R.
(
1999
).
Computer-assisted three-dimensional reconstruction and motion analysis of living, crawling cells.
Comput. Med. Imag. Graph
23
,
3
14
Steimer
K. S.
,
Puma
J. P.
,
Powers
M. A.
,
George-Nascimento
C.
,
Stephans
J. C.
,
Levy
J. A.
,
Sanchez-Pescador
R.
,
Luciw
P. A.
,
Barr
P. J.
,
Hallewell
R. A.
(
1986
).
Differential antibody responses of individuals infected with AIDS-associated retroviruses surveyed using theviral core antigen p25 gag expressed in bacteria.
Virology
150
,
283
290
Sylwester
A.
,
Wessels
D.
,
Anderson
S. A.
,
Warren
R. Q.
,
Shutt
D.
,
Kennedy
R.
,
Soll
D. R.
(
1993
).
HIV-induced syncytia of a T cell line form single giant pseudopods and are motile.
J. Cell Sci
106
,
941
953
Sylwester
A.
,
Shutt
D. C.
,
Wessels
D.
,
Stapleton
J. T.
,
Stites
J.
,
Kennedy
R. C.
,
Soll
D. R.
(
1995
).
T cells and HIV-induced T cell syncytia exhibit the same motility cycle.
J. Leuk. Biol
57
,
643
650
Sylwester
A.
,
Murphy
S.
,
Shutt
D.
,
Soll
D. R.
(
1997
).
HIV-induced syncytia are self-perpetuating and the primary cause of T cell death in culture.
J. Immunol
158
,
3996
4007
Sylwester
A.
,
Daniels
K.
,
Soll
D. R.
(
1998
).
The invasive and destructive behavior of HIV-induced T cell syncytia on collagen and endothelium.
J. Leuk. Biol
63
,
233
244
Taub
D. D.
,
Anver
M.
,
Oppenheim
J. J.
,
Longo
D. L.
,
Murphy
W. J.
(
1996
).
T lymphocyte recruitment by interleukin-8 (IL-8); IL-8 induced degranulation of neutrophils releases potent chemoattractants for human T lymphocytes both in vivo and in vitro.
J. Clin. Invest
97
,
1931
1941
Varnum
B.
,
Edwards
K.
,
Soll
D. R.
(
1985
).
Dictyostelium amoebae alter motility differently in response to increasing versus decreasing temporal gradients of cAMP.
J. Cell Biol
101
,
1
5
Varnum-Finney
B.
,
Edwards
K.
,
Voss
E.
,
Soll
D. R.
(
1987
).
Amoebae of Dictyostelium discoideum respond to an increasing temporal gradient of the chemoattractant cAMP with a reduced frequency of turning: evidence for a temporal mechanism in amoeboid chemotaxis.
Cell Motil. Cytoskel
8
,
7
17
von Poblotzki
A.
,
Wagner
R.
,
Niedrig
M.
,
Wanner
G.
,
Wolf
H.
,
Modrow
S.
(
1993
).
Identification of a region in the Pr55gag-polyprotein essential for HIV-1 particle formation.
Virology
193
,
981
985
Wang
L.
,
Chen
J. J. Y.
,
Gelman
B. B.
,
Konig
R.
,
Cloyd
M. W.
(
1999
).
A novel mechanism of CD4 lymphocyte depletion involves effects of HIV on resting lymphocytes: induction of lymph node homing and apoptosis upon secondary signaling through homing receptors.
J. Immunol
162
,
268
276
Weissman
D.
,
Rabin
R. L.
,
Arthos
J.
,
Ruppert
A.
,
Dybul
M.
,
Swofford
R.
,
Venkatesan
S.
,
Farber
J. M.
,
Fauci
A. S.
(
1997
).
Macrophage-trophic HIV and SIV envelope proteins induce a signal through the CCR5 chemokine receptor.
Nature
389
,
981
985
Wessels
D.
,
Murray
J.
,
Soll
D. R.
(
1992
).
The complex behavior cycle of chemotaxing Dictyostelium amoebae is regulated primarily by the temporal dynamics of the natural wave.
Cell Motil. Cytoskel
23
,
145
156
Wilkinson
P. C.
(
1988
).
Micropore filter methods for measuring leukocyte chemotaxis.
Meth. Enzymol
162
,
38
50
Zigmond
S. H.
,
Hirsch
J. G.
(
1973
).
Leukocyte locomotion and chemotaxis. New method for evaluation, and demonstration of a cell-derived chemotactic factor.
J. Exp. Med
137
,
387
410
Zigmond
S. H.
(
1977
).
The ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors.
J. Cell Biol
75
,
606
616
Zigmond
S. H.
,
Sullivan
S. J.
(
1979
).
Sensory adaptation of leukocytes to chemotactic peptides.
J. Cell. Biol
82
,
517
527
This content is only available via PDF.