The paraflagellar rod (PFR) of Trypanosoma brucei is a large, complex, intraflagellar structure that represents an excellent system in which to study flagellum assembly. Molecular ablation of one of its major constituents, the PFRA protein, in the snl-1 mutant causes considerable alteration of the PFR structure, leading to cell paralysis. Mutant trypanosomes sedimented to the bottom of the flask rather than staying in suspension but divided at a rate close to that of wild-type cells. This phenotype was complemented by transformation of snl-1 with a plasmid overexpressing an epitope-tagged copy of the PFRA gene. In the snl-1 mutant, other PFR proteins such as the second major constituent, PFRC, accumulated at the distal tip of the growing flagellum, forming a large dilation or ‘blob’. This was not assembled as filaments and was removed by detergent-extraction. Axonemal growth and structure was unmodified in the snl-1 mutant and the blob was present only at the tip of the new flagellum. Strikingly, the blob of unassembled material was shifted towards the base of the flagellum after cell division and was not detectable when the daughter cell started to produce a new flagellum in the next cell cycle. The dynamics of blob formation and regression are likely indicators of anterograde and retrograde transport systems operating in the flagellum. In this respect, the accumulation of unassembled PFR precursors in the flagellum shows interesting similarities with axonemal mutants in other systems, illustrating transport of components of a flagellar structure during both flagellum assembly and maintenance. Observation of PFR components indicate that these are likely to be regulated and modulated throughout the cell cycle.

REFERENCES

Baccetti
B.
(
1986
).
Evolutionary trends in sperm structure.
Comp. Biochem. Physiol
85
,
29
36
Bastin
P.
,
Bagherzadeh
A.
,
Matthews
K. R.
,
Gull
K.
(
1996
).
A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei.
Mol. Biochem. Parasitol
77
,
235
239
Bastin
P.
,
Sherwin
T.
,
Gull
K.
(
1998
).
Paraflagellar rod is essential to trypanosome motility.
Nature
391
,
548
–.
Beard
C. A.
,
Saborio
J. L.
,
Tewari
D.
,
Krieglstein
K. G.
,
Henschen
A. H.
,
ManningsJ.
E.
(
1992
).
Evidence for two distinct major protein components, PAR 1 and PAR 2, in the paraflagellar rod of Trypanosoma cruzi.
J. Biol. Chem
267
,
21656
21662
Cole
D.
,
Diener
D. R.
,
Himelblau
A. L.
,
Beech
P. L.
,
Fuster
J. C.
,
Rosenbaum
J.
(
1998
).
Chlamydomonas kinesin II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons.
J. Cell Biol
141
,
993
1008
Deflorin
J.
,
Rudolf
M.
,
Seebeck
T.
(
1994
).
The major components of the paraflagellar rod of Trypanosoma brucei are two similar but distinct proteins which are encoded by two different gene loci.
J. Biol. Chem
269
,
28745
28751
Eid
J.
,
Sollner-Webb
B.
(
1991
).
Stable integrative transformation of Trypanosoma brucei that occurs exclusively by homologous recombination.
Proc. Nat. Acad. Sci. USA
88
,
2118
2121
Fire
A.
,
Xu
S.
,
Montgomery
M. K.
,
Kostas
S. A.
,
Driver
S. E.
,
Mello
C. G.
(
1998
).
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.
Nature
391
,
806
811
Fok
A. K.
,
Wang
H.
,
Katayama
A. M.
,
Aihira
S.
,
AllenR.
D.
(
1994
).
22S axonemal dynein is preassembled and functional prior to being transported and attached on the axonemes.
Cell Motil. Cytoskel
29
,
215
224
Fouts
D. L.
,
Stryker
G. A.
,
Gorski
K. S.
,
Miller
M. J.
,
Nguyen
T. V.
,
Whrightsman
R. A.
,
Manning
J. E.
(
1998
).
Evidence for four major distinct protein components for the parflagellar rod of Trypanosoma cruzi.
J. Biol. Chem
273
,
21846
21855
Fowkes
M. E.
,
Mitchell
D. R.
(
1998
).
The role of preasssembled cytoplasmic complexes in the assembly of flagellum dynein.
Mol. Biol. Cell
9
,
2337
2347
Gallo
J. M.
,
Schrevel
J.
(
1985
).
Homologies between paraflagellar rod proteins from trypanosomes and euglenoids revealed by a monoclonal antibody.
Eur. J. Cell Biol
36
,
163
168
Johnson
K. A.
,
Rosenbaum
J. L.
(
1992
).
Polarity of flagellar assembly in Chlamydomonas.
J. Cell Biol
119
,
1605
1611
King
S. M.
,
Barbarese
E.
,
Dillman
J. F.
,
Patel-King
R. S.
,
Carson
J. H.
,
Pfister
K. K.
(
1996
).
Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved M r8, 000 light chain.
J. Biol. Chem
271
,
19358
19366
Kohl
L.
,
Sherwin
T.
,
Gull
K.
(
1999
).
Assembly of the paraflagellar rod and of the flagellum attachement zone complex in Trypanosoma brucei.
J. Euk. Microbiol
46
,
105
109
Kozminski
K. G.
,
Johnson
K. A.
,
Forscher
P.
,
Rosenbaum
J. L.
(
1993
).
A motility in the eukaryotic flagellum unrelated to flagellar beating.
Proc. Nat. Acad. Sci. USA
90
,
5519
5523
Kozminski
K. G.
,
Beech
P.
,
Rosenbaum
J. L.
(
1995
).
The Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the flagellar membrane.
J. Cell Biol
131
,
1517
1527
Lee
M. G. S.
,
Van der Ploeg
L. H. T.
(
1990
).
Homologous recombination and stable transfection in the parasitic protozoan Trypanosoma brucei.
Science
250
,
1583
1587
Marszalek
J.
,
Ruiz-Lozano
P.
,
Roberts
E.
,
Chien
K. R.
,
Goldstein
L. S. B.
(
1999
).
Situs inversus and embryonic ciliary morphogenesis defectsin mouse mutants lacking the KIF3A subunit of kinesin-II.
Proc. Nat. Acad. Sci. USA
96
,
5043
5048
Moore
L.
,
Santrich
C.
,
LeBowitz
J. H.
(
1996
).
Stage-specific expression of the Leishmania mexicana paraflagellar rod protein PFR-2.
Mol. Biochem. Parasitol
80
,
125
135
Morris
R. L.
,
Scholey
J. M.
(
1997
).
Heterotrimeric kinesin II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryo.
J. Cell Biol
138
,
1009
1022
Ngo
H. M.
,
Bouck
G. B.
(
1998
).
Heterogeneity and a coiled-coil prediction of trypanosomatid-like flagellar rod proteins in Euglena.
J. Euk. Microbiol
45
,
323
333
Ngo
H. M.
,
Tschudi
C.
,
Gull
K.
,
Ullu
E.
(
1998
).
Double-stranded RNA induces mRNA degradation in Trypanosomabrucei.
Proc. Nat. Acad. Sci. USA
95
,
14687
14692
Nonaka
S.
,
Tanaka
Y.
,
Okada
Y.
,
Takeda
S.
,
Harada
A.
,
Kanai
Y.
,
Kido
M.
,
Hirokawa
N.
(
1998
).
Randomization of left-right asymmetry due to loss of a nodal cilia regenerating leftward flow of extraembryonic fluid in mice lacking KIF-3B motor protein.
Cell
95
,
829
837
Pazour
G. J.
,
Wilkerson
C. G.
,
Witman
G. B.
(
1998
).
A dynein light chain is essential for the retrograde particle movement of intraflagellar transport.
J. Cell Biol
141
,
979
992
Pazour
G. J.
,
Dickert
B. L.
,
Witman
G. B.
(
1999
).
The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly.
J. Cell Biol
144
,
473
481
Piperno
G.
,
Mead
K.
,
Henderson
S.
(
1996
).
Inner dynein arms but not outer dynein arms require the activity of the kinesin homologue protein KHP1 Fla10 to reach the distal part of the flagella in Chlamydomonas.
J. Cell Biol
133
,
371
379
Porter
M. E.
,
Bower
R.
,
Knott
J. A.
,
Byrd
P.
,
Dentler
W.
(
1999
).
Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas.
Mol. Biol. Cell
10
,
693
712
Robinson
D. R.
,
Gull
K.
(
1991
).
Basal body movements as a mechanism for mitochondrial genome segregation in the trypanosome cell cycle.
Nature
352
,
731
733
Rosenbaum
J. L.
,
Moulder
J. E.
,
Ringo
D. L.
(
1969
).
Flagellar elongation and shortening in Chlamydomonas.
J. Cell Biol
41
,
600
619
Rosenbaum
J. L.
,
Cole
D. G.
,
Diener
D. R.
(
1999
).
Intraflagellar transport: the eyes have it.
J. Cell Biol
144
,
385
388
Russell
D. G.
,
Newsham
R. J.
,
Palmer
G. C.
,
Gull
K.
(
1983
).
Structural and biochemical characterization of the paraflagellar rod structure of Crithidia fasciculata.
Eur. J. Cell Biol
30
,
137
143
Santrich
C.
,
Moore
L.
,
Bastin
P.
,
Sherwin
T.
,
Brokaw
C.
,
Gull
K.
,
Lebowitz
J. H.
(
1997
).
A motility function for the paraflagellar rod in Leishmania parasites revealed by PFR-2 gene knockouts.
Mol. Biochem. Parasitol
90
,
95
109
Schlaeppi
K.
,
Deflorin
J.
,
Seebeck
T.
(
1989
).
The major component of the paraflagellar rod of Trypanosoma brucei is a helical protein that is encoded by two identical, tandemly linked genes.
J. Cell Biol
109
,
1695
1709
Scott
V.
,
Sherwin
T.
,
Gull
K.
(
1997
).
-Tubulin in trypanosomes: molecular characterisation and localisation to multiple and diverse microtubule organising centres.
J. Cell Sci
110
,
157
168
Shakir
M. A.
,
Fukushige
T.
,
Yasuda
H.
,
Miwa
J.
,
Siddiqui
S. S.
(
1993
).
C. elegansosm -3 gene mediating osmotic avoidance behaviour encodes a kinesin-like protein.
Neuroreport
4
,
891
894
Sherman
D. R.
,
Janz
L.
,
Hug.
M.
,
Clayton
C. E.
(
1991
).
Anatomy of the parp gene promoter of Trypanosoma brucei.
EMBO J
10
,
3379
3386
Sherwin
T.
,
Schneider
A.
,
Sasse
R.
,
Seebeck
T.
,
Gull
K.
(
1987
).
Distinct localisation and cell cycle dependence of COOH terminally tyrosinolated-tubulin in the microtubules of Trypanosoma brucei.
J. Cell Biol
104
,
439
446
Sherwin
T.
,
Gull
K.
(
1989
).
Visualization of detyrosination along single microtubules reveals novel mechanisms of assembly during cytoskeletal duplication in trypanosomes.
Cell
57
,
211
221
Sherwin
T.
,
Gull
K.
(
1989
).
The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeleton modifications.
Phil. Trans. R. Soc. London Ser. B
323
,
575
588
Tabish
M.
,
Siddiqui
Z. K.
,
Nishikawa
K.
,
Siddiqui
S. S.
(
1995
).
Exclusive expression of C. elegans osm -3 kinesin gene in chemosensory neurons open to external environment.
J. Mol. Biol
247
,
377
389
ten Asbroek
A. L. M. A.
,
Ouellette
M.
,
Borst
P.
(
1990
).
Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei.
Nature
348
,
174
175
Vickerman
K.
(
1962
).
The mechanism of cyclical development in trypanosomes of the Trypanosoma brucei subgroup: a hypothesis based on ultrastructural observations.
Trans. R. Soc. Trop. Med. Hyg
56
,
487
495
Witman
G. B.
(
1975
).
The site of in vivo assembly of flagellar microtubules.
Ann. NY Acad. Sci
253
,
178
191
Woods
A.
,
Sherwin
T.
,
Sasse
R.
,
MacRae
T. H.
,
Baines
A.
,
Gull
K.
(
1989
).
Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies.
J. Cell Sci
93
,
491
500
Woodward
R.
,
Gull
K.
(
1990
).
Timing of nuclear and kinetoplast DNA replication and early morphological events in the cell cycle of Trypanosoma brucei.
J. Cell Sci
95
,
49
57
Woodward
R.
,
Carden
M. J.
,
Gull
K.
(
1994
).
Molecular characterisation of a novel, repetitive protein of the paraflagellar rod in Trypanosoma brucei.
Mol. Biochem. Parasitol
67
,
31
39
Woodward
R.
,
Carden
M. J.
,
Gull
K.
(
1995
).
Immunological characterization of cytoskeletal proteins associated with the basal body, axoneme and flagellum attachment zone of Trypanosoma brucei.
Parasitology
111
,
77
85
Wu
Y. M.
,
Haghighat
N. G.
,
Ruben
L.
(
1992
).
The predominant calcimedins from Trypanosoma brucei comprise a family of flagellar EF-hand calcium-binding proteins.
Biochem J
287
,
187
193
Wu
Y. M.
,
Deford
J.
,
Benjamin
R.
,
Lee
M. G. S.
,
Ruben
L.
(
1994
).
The gene family of EF-hand calcium binding proteins from the flagellum of Trypanosoma brucei.
Biochem J
304
,
833
841
This content is only available via PDF.