The circadian dynamics of cyclic adenosine 3′,5′-monophosphate (cAMP) and cyclic guanosine 3′,5′-monophosphate (cGMP) were simulated in Paramecium multimicronucleatum. The mathematical functions determined closely mimic the Ca2+ dependence of adenylate cyclase (AC) and guanylate cyclase (GC) activities as documented in P. tetraurelia. Patterns of cAMP concentration ([cAMP]), cGMP concentration ([cGMP]), and the ratio [cGMP]/[cAMP] were calculated with respect to Ca2+ concentrations ([Ca2+]) fluctuating sinusoidally with a period of 24 hours at three different levels: low, medium, and high. The functions displayed varying patterns of [cAMP] characteristic for [Ca2+] fluctuating at each level, while patterns of [cGMP] and [cGMP]/[cAMP] almost paralleled [Ca2+] fluctuations. Similar patterns were observed for actual [cAMP] and [cGMP] measured during the light/dark cycle in P. multimicronucleatum, grown in axenic media additionally containing [Ca2+] at 25 (low), 100 (medium), or 400 (high) microM, respectively. The coincidence between simulated and measured fluctuations of [cAMP] and [cGMP] suggests that the circadian fluctuations of intracellular [Ca2+] primarily stimulate activities of AC and GC via their different degrees of Ca2+ dependence, which are ultimately responsible for the circadian spatiotemporal organization of various physiological functions in Paramecium.

REFERENCES

Ann
K. S.
,
Nelson
D. L.
(
1995
).
Protein substrates for cGMP-dependent protein phosphorylation in cilia of wild type and atalanta mutants of Paramecium.
Cell Motil. Cytoskel
30
,
252
260
Beavo
J. A.
(
1995
).
Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms.
Physiol. Rev.
75
,
725
748
Berridge
M. J.
(
1997
).
Elementary and global aspects of calcium signalling.
J. Physiol
499
,
291
306
Bonini
N. M.
,
Gustin
M. C.
,
Nelson
D. L.
(
1986
).
Regulation of ciliary motility by membrane potential in Paramecium: A role for cyclic AMP.
Cell Motil. Cytoskel
6
,
256
272
Bonini
N. M.
,
Nelson
D. L.
(
1988
).
Differential regulation of Paramecium ciliary motility by cAMP and cGMP.
J. Cell Biol
106
,
1615
1623
Bonini
N. M.
,
Nelson
D. L.
(
1990
).
Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium.
J. Cell Sci
95
,
219
230
Bonini
N. M.
,
Evans
T. C.
,
Miglietta
L. A. P.
,
Nelson
D. L.
(
1991
).
The regulation of ciliary motility in Paramecium by Ca2+and cyclic nucleotides.
Advan. Second Mess. Phosphoprot. Res
23
,
227
272
Carlson
G. L.
,
Nelson
D. L.
(
1996
).
The 44-kDa regulatory subunits of the Paramecium cAMP-dependent protein kinase lacks a dimerization domain and may have a unique autophosphorylation site sequence.
J. Euk. Microbiol
43
,
347
356
Cooper
D. M. F.
,
Karpen
J. W.
,
Fagan
K. A.
,
Mons
N. E.
(
1998
).
Ca2+-sensitive adenylyl cyclases.
Advan. Second Mess. Phosphoprot. Res
32
,
23
51
D'Souza
T.
,
Dyer
S. E.
(
1996
).
A cationic channel regulated by a vertebrate intrinsic circadian oscillator.
Nature
382
,
165
167
Eckert
R.
(
1972
).
Bioelectric control of ciliary activity.
Science
176
,
473
481
Fox
K. A.
,
Allen
D. R.
(
1990
).
Monoclonal antibody study of the decorated spongiome of contractile vacuole complexes of Paramecium.
J. Cell Sci
96
,
469
475
Ginty
D.D.
(
1997
).
Calcium regulation of gene expression: isn't that spatial?.
Neuron
18
,
183
186
Gustin
M. C.
,
Nelson
D. L.
(
1987
).
Regulation of ciliary adenylate cyclase by Ca2+in Paramecium.
Biochem. J
246
,
337
345
Hasegawa
K.
,
Tanakadate
A.
(
1984
).
Circadian rhythm of locomotor behavior in a population of Paramecium multimicronucleatum: Its characteristics as derived from circadian changes in the swimming speeds and the frequencies of avoiding response among individual cells.
Photochem. Photobiol
40
,
105
112
Hasegawa
K.
,
Tsukahara
Y.
,
Shimamoto
M.
,
Matsumoto
K.
,
Nakaoka
Y.
,
Sato
T.
(
1997
).
The Paramecium circadian clock: synchrony of changes in motility, membrane potential, cyclic AMP and cyclic GMP.
J. Comp. Physiol
181
,
41
46
Hasegawa
K.
,
Tsukahara
Y.
,
Ishizaki
S.
,
Shimamoto
M.
,
Nakamuara
T.
,
Sohma
M.
,
Sato
T.
(
1998
).
Contribution of the cAMP-dependent signal pathway to circadian synchrony of motility and resting membrane potential in Paramecium.
Photochem. Photobiol
67
,
256
262
Hausmann
K.
(
1972
).
Extrusive organelles in protists.
Int. Rev. Cytol
52
,
197
276
Hochstrasser
M.
,
Carlson
G. L.
,
Walczak
C. E.
,
Nelson
D. L.
(
1996
).
Paramecium has two regulatory subunits of cyclic AMP-dependent protein kinase, one unique to cilia.
J. Euk. Microbiol
43
,
356
362
Johnson
C. H.
,
Knight
M. R.
,
Kondo
T.
,
Masson
P.
,
Sedbrook
J.
,
Haley
A.
,
Trewavas
A.
(
1995
).
Circadian oscillations of cytosolic and chloroplastic free calcium in plants.
Science
269
,
1863
1865
Klauke
N.
,
Plattner
H.
(
1997
).
Imaging of Ca2+transients induced in Paramecium cells by a polyamine secretagogue.
J. Cell Sci
110
,
975
983
Lincoln
T.M.
,
Cornwell
T. L.
,
Komalavilas
P.
,
Boerth
N.
(
1996
).
Cyclic GMP-dependent protein kinase in nitric oxide signaling.
Meth. Enzymol
269
,
149
166
MacMillan-Crow
L. A.
,
Lincoln
T. M.
(
1994
).
High-affinity binding and localization of the cyclic GMP-dependent protein kinase with the intermediate filament protein vimentin.
Biochem. J
33
,
8035
8043
Miglietta
L. A. P.
,
Nelson
D. L.
(
1988
).
A novel cGMP-dependent protein kinase from Paramecium.
J. Biol. Chem
31
,
16096
16105
McDonald
L. J.
,
Murad
F.
(
1995
).
Nitric oxide and cGMP signaling.
Advan. Pharmacol
34
,
263
275
Naitoh
Y.
,
Eckert
R.
(
1969
).
Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation.
Science
164
,
963
965
Naitoh
Y.
,
Kaneko
H.
(
1972
).
Reactivated Triton-extracted, models of Paramecium: modification of ciliary movement by calcium ions.
Science
176
,
523
524
Nakaoka
Y.
,
Ooi
H.
(
1985
).
Regulation of ciliary reversal in Triton-extracted Paramecium by calcium and cyclic adenosine monophosphate.
J. Cell Sci
77
,
185
195
Neher
E.
(
1998
).
Vesicle pools and Ca2+microdomains: new tools for understanding their roles in neurotransmitter release.
Neuron
20
,
389
399
Nikaido
S. S.
,
Takahashi
J. S.
(
1996
).
Calcium modulates circadian variation in cAMP-stimulated melatonin in chick pineal cells.
Brain Res
716
,
1
10
Plattner
H.
,
Braun
C.
,
Hentschel
J.
(
1997
).
Facilitation of membrane fusion during exocytosis and exocytosis-coupled endocytosis and acceleration of ‘ghost’ detachment in Paramecium by extracellular calcium. A quenched-flow/freeze analysis.
J. Membr. Biol
158
,
197
208
Ringheim
G. R.
,
Taylor
S. S.
(
1991
).
Dissecting the domain structure ofthe regulatory subunit of cAMP-dependent protein kinase I and elucidating the role of MgATP.
J. Biol. Chem
265
,
4800
4808
Sharma
R. K.
,
Duda
T.
(
1997
).
Plasma membrane guanylate cyclase. A multimodule transduction system.
Advan. Exp. Med. Biol
407
,
271
279
Schultz
J. E.
,
Uhl
D. G.
,
Klumpp
S.
(
1987
).
Ionic regulation of adenylate cyclase from the cilia of Paramecium tetraurelia.
Biochem. J
246
,
187
192
Schultz
J. E.
,
Klumpp
S.
,
Benz
R.
,
Schurhoff-Goetters
W. J. Ch.
,
Schmid
A.
(
1992
).
Regulation of adenylyl cyclase from Paramecium by an ionic potassium conductance.
Science
255
,
600
603
Schultz
J. E.
,
Klumpp
S.
(
1993
).
Cyclic nucleotides and calcium signaling in Paramecium.
Advan. Second Mess. Phosphoprot. Res
27
,
25
46
Taylor
S.S.
(
1989
).
CAMP-dependent protein kinase.
J. Biol. Chem
264
,
8443
8446
Tzavara
E. T.
,
Pouille
Y.
,
Defer
N.
,
Hanoune
J.
(
1996
).
Diurnal variation of the adenylyl cyclase type 1 in the rat pineal gland.
Proc. Nat. Acad. Sci. USA
93
,
11208
11212
Walczak
C. E.
,
Nelson
D. L.
(
1993
).
Invitro phosphorylation of ciliary dyneins by protein kisases from Paramecium.
J. Cell Sci
106
,
1369
1376
This content is only available via PDF.