The origin of epithelial cell polarity during development is a fundamental problem in cell biology. Central to this process is the establishment of asymmetric membrane domains that will ultimately form the apical and basolateral surfaces. The spectrin-based membrane skeleton has long been thought to participate in the generation of this asymmetry. Drosophila melanogaster contains two known (beta)-spectrin isoforms: a conventional (beta)-spectrin chain, and the novel isoform (beta)(Heavy)-spectrin. These two proteins are restricted to the basolateral and apical membrane domains, respectively. To assay for the emergence of membrane asymmetry, we have characterized the distribution of these two (beta)-spectrins during the formation of the primary epithelium in the fly embryo. Our results show that the syncytial embryo contains a maternally established apical membrane skeleton containing (beta)(Heavy)-spectrin into which the basolateral (beta)-spectrin membrane skeleton is added. We have called this process basolateral interpolation. Although basolateral membrane skeleton addition begins during cellularization, it does not become fully established until the formation of a mature zonula adherens at mid to late gastrulation. The behavior of (beta)-spectrin is consistent with a primary role in establishing and/or maintaining the basolateral domain while the behavior of (beta)(Heavy)-spectrin suggests that its primary role is associated with a specialized DE-cadherin complex associated with the furrow canals and with the maturation of the zonula adherens. Thus, the apical spectrin membrane skeleton appears to play a distinct rather than analogous role to the basolateral spectrin membrane skeleton, during the emergence of cell polarity. We find that there are several parallels between our observations and previous studies on the establishment of primary epithelial polarity in vertebrates, suggesting that basolateral interpolation of the membrane skeleton may be a common mechanism in many organisms.

REFERENCES

Adams
C. L.
,
Chen
Y.-T.
,
Smith
S. J.
,
Nelson
W. J.
(
1998
).
Mechanisms of epithelial cell-cell adhesion and cell compaction revealed by high-resolution tracking of E-cadherin-green fluorescent protein.
J. Cell Biol
142
,
1105
1119
Bennett
V.
,
Gilligan
D. M.
(
1993
).
The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane.
Annu. Rev. Cell Biol
9
,
27
66
Burgess
R. W.
,
Deitcher
D. L.
,
Schwarz
T. L.
(
1997
).
The synaptic protein syntaxin 1 is required for cellularization of Drosophila embryos.
J. Cell Biol
138
,
861
875
Byers
T. J.
,
Husain-Chisti
A.
,
Dubreuil
R. R.
,
Branton
D.
,
Goldstein
L. S. B.
(
1989
).
Sequence similarity of the amino-terminal domain of Drosophila beta spectrin to alpha actinin and dystrophin.
J. Cell Biol
109
,
1633
1641
Chen
M. S.
,
Obar
R. A.
,
Schroeder
C. C.
,
Austin
T. W.
,
Poodry
C. A.
,
Wadsworth
S. C.
,
Vallee
R. B.
(
1991
).
Multiple forms of dynamin are encoded by shibire, a Drosophila gene involved in endocytosis.
Nature
351
,
583
586
Cox
R. T.
,
Kirkpatrick
C.
,
Peifer
M.
(
1996
).
Armadillo is required for adherens junction assembly, cell polarity and morphogenesis during Drosophila embryogenesis.
J. Cell Biol
134
,
133
148
DeMatteis
M. A.
,
Morrow
J. S.
(
1998
).
The role of ankyrin and spectrinin membrane transport and domain formation.
Curr. Opin. Cell Biol
10
,
542
549
Drubin
D. G.
,
Nelson
W. J.
(
1996
).
Origins of Cell Polarity.
Cell
84
,
335
344
Dubreuil
R. R.
,
Frankel
J.
,
Wang
P.
,
Howrylak
J.
,
Kappil
M.
,
Grushko
T. A.
(
1998
).
Mutations of alpha spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae.
Dev. Biol
194
,
1
11
Dubreuil
R. R.
,
Maddux
P. B.
,
Grushko
T. A.
,
MacVicar
G. R.
(
1998
).
Segregation of two spectrin isoforms: polarized membrane-binding sites direct polarized membrane skeleton assembly.
Mol. Biol. Cell
8
,
1933
1942
Fullilove
S. L.
,
Jacobson
A. G.
(
1971
).
Nuclear elongation and cytokinesis in Drosophila montana.
Dev. Biol
26
,
560
577
Gawantka
V.
,
Ellinger-Ziegelbauer
H.
,
Hausen
P.
(
1992
).
1-integrin is a maternal protein that is inserted into all newly formed plasma membranes during early Xenopus development.
Development
115
,
595
605
Glenney
J. R.
Jr.
,
Glenney
P.
,
Weber
K.
(
1983
).
The spectrin-related molecule, TW-260/240, cross-links the actin bundles of the microvillus rootlets in the brush borders of intestinal epithelial cells.
J. Cell Biol
96
,
1491
1496
Glenney
J. R. P. G.
Jr.
,
Osborn
M.
,
Weber
K.
(
1982
).
An F-actin-and Calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin.
Cell
28
,
843
854
Grawe
F.
,
Wodarz
A.
,
Lee
B.
,
Knust
E.
,
Skaer
H.
(
1996
).
The Drosophila genes crumbs and stardust are involved in the biogenesis of adherens junctions.
Development
122
,
951
959
Grindstaff
K. K.
,
Yeaman
C.
,
Anandasabapathy
N.
,
Shu-Chan
H.
,
Rodriguez-Boulan
E.
,
Scheller
R. H.
,
Nelson
W. J.
(
1998
).
Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells.
Cell
93
,
731
740
Holleran
E. A.
,
Tokito
M. K.
,
Karki
S.
,
Holzbaur
E. L. F.
(
1996
).
Centractin (ARP1) associates with spectrin revealing a potential mechanism to link dynactin to intracellular organelles.
J. Cell Biol
135
,
1815
1829
Ishikawa
M.
,
Murofushi
H.
,
Sakai
H.
(
1983
).
Bundling of microtubules in vitro by fodrin.
J. Biochem. (Tokyo)
94
,
1209
1217
Johnson
M. H.
,
Pickering
S. J.
,
Dhiman
A.
,
Radcliffe
G. S.
,
Maro
B.
(
1988
).
Cytocortical organization during natural and prolonged mitosis of mouse 8-cell blastomeres.
Development
102
,
143
158
Katoh
K.
,
Ishikawa
H.
(
1989
).
The cytoskeletal involvement in cellularization of the Drosophila melanogaster embryo.
Protoplasma
150
,
83
95
Lee
J. K.
,
Brandin
E.
,
Branton
D.
,
Goldstein
L. S. B.
(
1997
).
-spectrin is required for ovarian follicle monolayer integrity in Drosphila melanogaster.
Development
124
,
353
362
Lombardo
C. R.
,
Rimm
D. L.
,
Koslov
E.
,
Morrow
J. S.
(
1994
).
Human recombinant-catenin binds to spectrin.
Mol. Biol. Cell
5
,
47
–.
McKeown
C.
,
Praitis
V.
,
Austin
J.
(
1998
).
sma-1 encodes aH-spectrin homolog required for Caenorhabditiselegans morphogenesis.
Development
125
,
2087
2098
McLean
I. W.
,
Nakane
P. K.
(
1974
).
Periodate-lysine-paraformaldehyde fixative, a new fixative for immunoelectron microscopy.
J. Histochem. Cytochem
22
,
1077
1108
McNeill
H.
,
Ozawa
M.
,
Kemler
R.
,
Nelson
W. J.
(
1990
).
Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity.
Cell
62
,
309
316
Muller
A. H. J.
,
Angres
B.
,
Hausen
P.
(
1992
).
U-cadherin in Xenopus oogenesis and oocyte maturation.
Development
114
,
533
543
Muller
H.-A. J.
,
Hausen
P.
(
1995
).
Epithelial cell polarity in early Xenopus development.
Dev. Dyn
202
,
405
420
Muller
H.-A. J.
,
Wieschaus
E.
(
1996
).
armadillo, bazooka, and stardust are critical for early stages in formation of the zonula adherens and maintenance of the polarized blastoderm epithelium in Drosophila.
J. Cell Biol
134
,
149
163
Nelson
W. J.
,
Shore
E. M.
,
Wang
A. Z.
,
Hammerton
R. W.
(
1990
).
Identification of a membrane-cytoskeletal complex containing the cell adhesion molecule uvomorulin (E-cadherin), ankyrin, and fodrin in Mandin-Darby canine kidney epithelial cells.
J. Cell Biol
110
,
349
357
Nelson
W. P.
,
Veshnock
P. J.
(
1987
).
Ankyrin binding to the (Na++ K+) ATPase and implications for the organization of membrane domains in polarized cells.
Nature
328
,
533
535
Oda
H.
,
Tsukita
S.
,
Takeichi
M.
(
1998
).
Dynamic behavior of thecadherin-based cell-cell adhesion system during Drosophila gastrulation.
Dev. Biol
203
,
435
450
Oda
H.
,
Uemura
T.
,
Harada
Y.
,
Iwai
Y.
,
Takeichi
M.
(
1994
).
A Drosophila homolog of cadherin associated with armadillo and essential for embryonic cell-cell adhesion.
Dev. Biol
165
,
716
726
Pesacreta
T. C.
,
Byers
T. J.
,
Dubreuil
R.
,
Kiehart
D. P.
,
Branton
D.
(
1989
).
Drosophila spectrin: the membrane skeleton during embryogenesis.
J. Cell Biol
108
,
1697
1709
Reeve
W. D. J.
,
Ziomek
C. A.
(
1981
).
Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction.
J. Embryol. Exp. Morph
62
,
339
350
Reima
I.
,
Lehtonen
E.
(
1986
).
Localization of nonerythroid spectrin and actin in mouse oocytes and preimplantation embryos.
Differentiation
30
,
68
75
Schatten
H.
,
Cheney
R.
,
Balczon
R.
,
Willard
M.
,
Cline
C.
,
Simerly
C.
,
Schatten
G.
(
1986
).
Localization of fodrin during fertilization and early development of sea urchins and mice.
Dev. Biol
118
,
457
466
Singal
P. K.
,
Sanders
E. J.
(
1974
).
An ultrastructural study of the first cleavage of Xenopus embryos.
J. Ultrastruct. Res
47
,
433
451
Sobel
J. S.
,
Goldstein
E. G.
(
1988
).
Spectrin synthesis in the preimplantation mouse embryo.
Dev. Biol
128
,
284
289
Sobel
J. S.
,
Goldstein
E. G.
,
Damsky
C. H.
(
1988
).
Contact modulation of spectrin assembly in the preimplantation mouse embryo.
J. Cell Biol
107
,
605
–.
Sobel
S.
,
Alliegro
M. A.
(
1985
).
Changes in the distribution of a spectrin-like protein during development of the preimplantation mouse embryo.
J. Cell Biol
100
,
333
336
Swanson
M. M.
,
Poodry
C. A.
(
1981
).
The shibire ts mutant of Drosophila: a probe for the study of embryonic development.
Dev. Biol
84
,
465
470
Tepass
U.
(
1996
).
Crumbs, a component of the apical membrane, is required for zonula adherens formation in primary epithelia of Drosophila.
Dev. Biol
177
,
217
225
Tepass
U.
,
Hartenstein
V.
(
1994
).
The development of cellular junctions in the Drosophila embryo.
Dev. Biol
161
,
563
596
Thomas
G. H.
,
Kiehart
D. P.
(
1994
).
Heavy-spectrin has a restricted tissue and sub cellular distribution during Drosophila embryogenesis.
Development
120
,
2039
2050
Thomas
G. H.
,
Newbern
E. C.
,
Korte
C. C.
,
Bales
M. A.
,
Muse
S. V.
,
Clark
A. G.
,
Kiehart
D. P.
(
1997
).
Intragenic duplication and divergence in the spectrin superfamily of proteins.
Mol. Biol. Evol
14
,
1285
1295
Thomas
G. H.
,
Zarnescu
D. C.
,
Juedes
A. E.
,
Bales
M. A.
,
Londergan
A.
,
Korte
C. C.
,
Kiehart
D. P.
(
1998
).
H-spectrin is essential for development and contributes to specific cell fates in the eye.
Development
125
,
2125
2134
Turner
F. R.
,
Mahowald
A. P.
(
1976
).
Scanning electron microscopy of Drosophila embryogenesis: 1. The structure of the egg envelopes and the formation of the cellular blastoderm.
Dev. Biol
50
,
95
108
Uemura
T.
,
Oda
H.
,
Kraut
R.
,
Hayashi
S.
,
Kataoka
Y.
,
Takeichi
M.
(
1996
).
Zygotic DE-cadherin expression is required for processes of dynamic epithelial cell rearrangement in the Drosophila embryo.
Genes Dev
10
,
659
671
van der Bliek
A. M.
,
Meyerowitz
E. M.
(
1991
).
Dynamin-like protein encoded by the Drosophilashibire gene associated with vesicular traffic.
Nature
351
,
411
444
Veil
A.
,
Branton
D.
(
1996
).
Spectrin: on the path from structure to function.
Curr. Opin. Cell Biol
8
,
49
55
Vestweber
D.
,
Gossler
A.
,
Boller
K.
,
Kemler
R.
(
1987
).
Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos.
Dev. Biol
124
,
451
456
Watson
A. J.
,
Damsky
C. H.
,
Kidder
G. M.
(
1990
).
Differentiation of an epithelium: factors affecting the polarized distribution of Na+,K+-ATPase in mouse trophectoderm.
Dev. Biol
141
,
104
114
Watson
A. J.
,
Kidder
G. M.
(
1988
).
Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis.
Dev. Biol
126
,
80
90
Wiley
L. M.
,
Kidder
G. M.
,
Watson
A. J.
(
1990
).
Cell polarity and development of the first epithelium.
BioEssays
12
,
67
73
Yeaman
C.
,
Grindstaff
K.
,
Nelson
W. J.
(
1999
).
New perspectives on mechanisms involved in generating epithelial cell polarity.
Physiol. Rev.
79
,
73
98
Young
P. E.
,
Pesacreta
T. C.
,
Kiehart
D. P.
(
1991
).
Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis.
Development
111
,
1
14
This content is only available via PDF.