Listeria monocytogenes, Shigella flexneri, and Rickettsia conorii are three bacterial pathogens that are able to polymerize actin into ‘comet tail’ structures and move within the cytosol of infected cells. The actin-based motilities of L. monocytogenes and S. flexneri are known to require the bacterial proteins ActA and IcsA, respectively, and several mammalian cytoskeleton proteins including the Arp2/3 complex and VASP (vasodilator-stimulated phosphoprotein) for L. monocytogenes and vinculin and N-WASP (the neural Wiskott-Aldrich syndrome protein) for S. flexneri. In contrast, little is known about the motility of R. conorii. In the present study, we have analysed the actin-based motility of this bacterium in comparison to that of L. monocytogenes and S. flexneri. Rickettsia moved at least three times more slowly than Listeria and Shigella in both infected cells and Xenopus laevis egg extracts. Decoration of actin with the S1 subfragment of myosin in infected cells showed that the comet tails of Rickettsia have a structure strikingly different from those of L. monocytogenes or S. flexneri. In Listeria and Shigella tails, actin filaments form a branching network while Rickettsia tails display longer and not cross-linked actin filaments. Immunofluorescence studies revealed that the two host proteins, VASP and (α)-actinin colocalized with actin in the tails of Rickettsia but neither the Arp2/3 complex which we detected in the Shigella actin tails, nor N-WASP, were detected in Rickettsia actin tails. Taken together, these results suggest that R. conorii may use a different mechanism of actin polymerization.

Adam
T.
,
Giry
M.
,
Boquet
P.
,
Sansonetti
P.
(
1996
).
Rho-dependent membrane folding causes Shigella entry into epithelial cells.
EMBO J
15
,
3315
3321
Andersson
S. G. E.
,
Zomorodipour
A.
,
Andersson
J. O.
,
Sicheritz-Ponten
T.
,
Alsmark
U. C. M.
,
Podowski
R. M.
,
Näslund
A. K.
,
Erikson
A. S.
,
Winkler
H. H.
,
Kurland
C. G.
(
1998
).
The genome sequence of Rickettsia prowasekii and the origin of mitochondria.
Nature
396
,
133
140
Andreoli
C.
,
Martin
M.
,
le Borgne
R.
,
Reggio
H.
,
Mangeat
P.
(
1994
).
Ezrin has properties to cell associate at the plasma membrane.
J. Cell Sci
107
,
2509
2521
Bernardini
M. L.
,
Mounier
J.
,
D'Hauteville
H.
,
Coquis-Rondon
M.
,
Sansonetti
P. J.
(
1989
).
Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin.
Proc. Nat. Acad. Sci. USA
86
,
3867
3871
Brindle
N. P.
,
Holt
M. R.
,
Davies
J. E.
,
Price
C. J.
,
Critchley
D. R.
(
1996
).
The focal-adhesion vasodilator-stimulated phosphoprotein (VASP) binds to the proline-rich domain in vinculin.
Biochem. J
318
,
753
757
Brundage
R. A.
,
Smith
G. A.
,
Camilli
A.
,
Theriot
J.
,
Portnoy
D. A.
(
1993
).
Expression and phosphorylation of the Listeria monocytogenes ActA protein in mammalian cells.
Proc. Nat. Acad. Sci. USA
90
,
11890
11894
Carlier
M. F.
,
Laurent
V.
,
Santolini
J.
,
Melki
R.
,
Didry
D.
,
Xia
G.-X.
,
Hong
Y.
,
Chua
N.-H.
,
Pantaloni
D.
(
1997
).
Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility.
J. Cell Biol
136
,
1307
1322
Chakraborty
T.
,
Ebel
F.
,
Dommann
E.
,
Niebuhr
K.
,
Gerstel
B.
,
Pistor
S.
,
Temm-Grove
C. J.
,
Jockusch
B. M.
,
Reinhard
M.
,
Walter
U.
,
Wehland
J.
(
1995
).
A focal adhesion factor directly linking intracellularly motile Listeria monocytogenes and Listeria ivanovii to the actin-based cytoskeleton of mammalian cells.
EMBO J
14
,
1314
1321
Cudmore
S.
,
Reckmann
I.
,
Griffiths
G.
,
Way
M.
(
1996
).
Vaccinia virus: a model system for actin-membrane interactions.
J. Cell Sci
109
,
1739
1747
Dabiri
G. A.
,
Sanger
J. M.
,
Portnoy
D. A.
,
Southwick
F. S.
(
1990
).
Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly.
Proc. Nat. Acad. Sci. USA
87
,
6068
6072
David
V.
,
Gouin
E.
,
Van Troys
M.
,
Grogan
A.
,
Segal
A. W.
,
Ampe
C.
,
Cossart
P.
(
1998
).
Identification of cofilin, coronin, Rac and capZ in actin tails using a Listeria affinity approach.
J. Cell Science
111
,
2877
2884
Dold
F. G.
,
Sanger
J. M.
,
Sanger
J. W.
(
1994
).
Intact alpha-actinin molecules are needed for both the assembly of actin into tails and the locomotion of Listeria monocytogenes inside infected cells.
Cell Motil. Cytoskel
28
,
97
107
Domann
E.
,
Wehland
J.
,
Rohde
M.
,
Pistor
S.
,
Hartl
M.
,
Goebel
W.
,
Leimeister-Wächter
M.
,
Wuenscher
M.
,
Chakraborty
T.
(
1992
).
A novel bacterial gene in Listeria monocytogenes required for host cell microfilament interaction with homology to the proline-rich region of vinculin.
EMBO J
11
,
1981
1990
Dramsi
S.
,
Cossart
P.
(
1998
).
Intracellular pathogens and the actin cytoskeleton.
Annu. Rev. Cell Dev. Biol
14
,
137
166
Gertler
F. B.
,
Niebuhr
K.
,
Reinhard
M.
,
Wehland
J.
,
Soriano
P.
(
1996
).
Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics.
Cell
87
,
227
239
Goldberg
M.
,
Bârzu
O.
,
Parsot
C.
,
Sansonetti
P. J.
(
1993
).
Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement.
J. Bacteriol
175
,
2189
2196
Goldberg
M. A.
,
Theriot
J. A.
(
1995
).
Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility.
Proc. Nat. Acad. Sci. USA
92
,
6572
6576
Goldberg
M.
(
1997
).
Shigella actin-based motility in the absence of vinculin.
Cell Motil. Cytoskel
37
,
44
53
Gray
M. L.
,
Killinger
A. H.
(
1966
).
Listeria monocytogenes and listeric infections.
Bact. Rev.
30
,
309
382
Heinzen
R. A.
,
Hayes
S. F.
,
Peacock
M. G.
,
Hackstadt
T.
(
1993
).
Directional actin polymerization associated with spotted fever group Rickettsia infection of vero cells.
Infect. Immun
61
,
1926
1935
Kadurugamuwa
J. L.
,
Rohde
M.
,
Wehland
J.
,
Timmis
K.
(
1991
).
Intercellular spread of Shigella flexneri through a monolayer mediated by membranous protrusions and associated with reorganization of the cytoskeleton protein vinculin.
Infect. Immun
59
,
3463
3471
Kocks
C.
,
Gouin
E.
,
Tabouret
M.
,
Berche
P.
,
Ohayon
H.
,
Cossart
P.
(
1992
).
Listeria monocytogenes -induced actin assembly requires the actA gene product, a surface protein.
Cell
68
,
521
531
Kocks
C.
,
Hellio
R.
,
Gounon
P.
,
Ohayon
H.
,
Cossart
P.
(
1993
).
Polarized distribution of Listeria monocytogenes surface protein ActA at the site of directional actin assembly.
J. Cell Sci
105
,
699
710
Kocks
C.
,
Marchand
J. B.
,
Gouin
E.
,
d'Hauteville
H.
,
Sansonetti
P. J.
,
Carlier
M. F.
,
Cossart
P.
(
1995
).
The unrelated surface proteins ActA of Listeria monocytogenes and IcsA of Shigella flexneri are sufficient to confer actin-based motility on Listeria innocua and Escherichia coli respectively.
Mol. Microbiol
18
,
413
423
Labrec
E. H.
,
Schneider
H.
,
Magnani
T. J.
,
Formal
S. B.
(
1964
).
Epithelial cell penetration as an essentiel step in the pathogenesis of bacillary dysentery.
J. Bacteriol
88
,
1503
1518
Laine
R. O.
,
Zeile
W.
,
Kang
F.
,
Purich
D. L.
,
Southwick
F. S.
(
1997
).
Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility.
J. Cell Biol
138
,
1255
1264
Lasa
I.
,
David
V.
,
Gouin
E.
,
Marchand
J. B.
,
Cossart
P.
(
1995
).
The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator.
Mol. Microbiol
18
,
425
436
Lasa
I.
,
Dehoux
P.
,
Cossart
P.
(
1998
).
Actin polymerization and bacterial movement.
Biochim. Biophys. Acta
1402
,
217
228
Lett
M.-C.
,
Sasakawa
C.
,
Okada
N.
,
Sakai
T.
,
Makino
S.
,
Yamada
M.
,
Komatsu
K.
,
Yoshikawa
M.
(
1989
).
virG, a plasmid-coded virulence gene of Shigella flexneri: Identification of the virG protein and determination of the complete coding sequence.
J. Bacteriol
171
,
353
359
Makino
S.
,
Sasakawa
C.
,
Kamata
K.
,
Kurata
T.
,
Yoshikawa
M.
(
1986
).
A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a.
Cell
46
,
551
555
Marchand
J. B.
,
Moreau
P.
,
Paoletti
A.
,
Cossart
P.
,
Carlier
M. F.
,
Pantaloni
D.
(
1995
).
Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface.
J. Cell Biol
130
,
331
343
Mounier
J.
,
Ryter
A.
,
Coquis-Rondon
M.
,
Sansonetti
P. J.
(
1990
).
Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocyte-like cell line Caco-2.
Infect. Immun
58
,
1048
1058
Mullins
R. D.
,
Heuser
J. A.
,
Pollard
T. D.
(
1998
).
The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments.
Proc. Nat. Acad. Sci. USA
95
,
6181
6186
Mullins
R. D.
,
Kelleher
J. F.
,
Xu
J.
,
Pollard
T. D.
(
1998
).
Arp2/3 complex from Acanthamoeba binds profilin and cross-links actin filaments.
Mol. Biol. Cell
9
,
841
852
Niebuhr
K.
,
Ebel
F.
,
Frank
R.
,
Reinhard
M.
,
Domann
E.
,
Carl
U. D.
,
Walter
U.
,
Gertler
F. B.
,
Wehland
J.
,
Chakraborty
T.
(
1997
).
A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family.
EMBO J
16
,
5433
5444
Raoult
D.
,
Roux
V.
(
1997
).
Rickettsioses as paradigms of new or emerging Infectious diseases.
Clin. Microbiol. Rev.
10
,
694
719
Reinhard
M.
,
Halbrugge
M.
,
Scheer
U.
,
Wiegand
C.
,
Jockusch
B. M.
,
Walter
U.
(
1992
).
The 45/50 kDa phosphoprotein VASP purified from human platelets is a novel protein associated with actin filaments and focal contacts.
EMBO J
11
,
2063
2070
Reinhard
M.
,
Rudiger
M.
,
Jockusch
B. M.
,
Walter
U.
(
1996
).
VASP interaction with vinculin: a recurring theme of interactions with proline-rich motifs.
FEBS Lett
399
,
103
107
Rosenblatt
J.
,
Agnew
B. J.
,
Abe
H.
,
Barnburg
J. R.
,
Mitchison
T. J.
(
1997
).
Xenopus actin-depolymerizing factor/cofilin (XAC) is responsible for the turnover of actin filaments in Listeria monocytogenes tails.
J. Cell Biol
136
,
1323
1332
Sanger
J. M.
,
Sanger
J. W.
,
Southwick
F. S.
(
1992
).
Host cell actin assembly is necessary and likely to provide the propulsive force for intracellular movement of Listeria monocytogenes.
Infect. Immun
60
,
3609
3619
Schafer
D. A.
,
Jennings
P. B.
,
Cooper
J. A.
(
1996
).
Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides.
J. Cell Biol
135
,
169
179
Sechi
A. S.
,
Wehland
J.
,
Small
J. V.
(
1997
).
The isolated comet tail pseudopodium of Listeria monocytogenes: a tail of two actin filament populations, long and axial and short and random.
J. Cell Biol
137
,
155
167
Suzuki
T.
,
Sasakawa
C.
(
1995
).
Extracellular transport of VirG protein in Shigella.
J. Biol. Chem
270
,
30874
30880
Suzuki
T.
,
Shinsuke
S.
,
Sasakawa
C.
(
1996
).
Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility.
J. Biol. Chem
271
,
21878
21885
Suzuki
T.
,
Miki
H.
,
Takenawa
T.
,
Sasakawa
C.
(
1998
).
Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri.
EMBO J
17
,
2767
2776
Temm-Grove
C. T.
,
Jockusch
B.
,
Rohde
M.
,
Niebuhr
K.
,
Chakraborty
T.
,
Wehland
J.
(
1994
).
Exploitation of microfilament proteins by Listeria monocytogenes: microvillus-like composition of the comet tails and vectorial spreading in polarized epithelial sheets.
J. Cell Sci
107
,
2951
2960
Teysseire
N.
,
Chiche-Portiche
C.
,
Raoult
D.
(
1992
).
Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization.
Res. Microbiol
143
,
821
829
Theriot
J. A.
,
Mitchison
T. J.
,
Tilney
L. G.
,
Portnoy
D. A.
(
1992
).
The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization.
Nature
357
,
257
260
Theriot
J. A.
,
Rosenblatt
J.
,
Portnoy
D. A.
,
Goldschmidt-Clermont
P. J.
,
Mitchison
T. J.
(
1994
).
Involvement of profilin in the actin-based motility of L. monocytogenes in cells and in cell-free extracts.
Cell
76
,
505
517
Theriot
J. A.
(
1997
).
Accelerating on a treadmill: ADF/Cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton.
J. Cell Biol
136
,
1165
1168
Tilney
L. G.
,
Connelly
P. S.
,
Portnoy
D. A.
(
1990
).
Actin filament nucleation by the bacterial pathogen, Listeria monocytogenes.
J. Cell Biol
111
,
2979
2988
Tilney
L. G.
,
DeRosier
D. J.
,
Tilney
M. S.
(
1992
).
How Listeria exploits host cell actin to form its own cytoskeleton. I. Formation of a tail and how that tail might be involved in movement.
J. Cell Biol
118
,
71
81
Tilney
L. G.
,
DeRosier
D. J.
,
Weber
A.
,
Tilney
M. S.
(
1992
).
How Listeria exploits host cell actin to form its own cytoskeleton. II. Nucleation, Actin filament polarity, filament assembly, and evidence for a pointed end capper.
J. Cell Biol
118
,
83
93
Vicente
M. F.
,
Baquero
F.
,
Perez-Diaz
J. C.
(
1985
).
Cloning and expression of the Listeria monocytogenes haemolysin in E. coli. FEMS Microbiol.
Lett
30
,
77
79
Welch
M. D.
,
DePace
A. H.
,
Verma
S.
,
Iwamatsu
A.
,
Mitchison
T. J.
(
1997
).
The human Arp2/3 complex is composed of evolutionarily conserved subunits and is localized to cellular regions of dynamic actin filaments assembly.
J. Cell Biol
138
,
375
384
Welch
M. D.
,
Rosenblatt
J.
,
Skoble
J.
,
Portnoy
D. A.
,
Mitchison
T. J.
(
1998
).
Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation.
Science
281
,
105
108
Winkler
H. H.
(
1990
).
Rickettsia species (as organisms).
Annu. Rev. Microbiol
44
,
131
153
Zeile
W. L.
,
Purich
D. L.
,
Southwick
F. S.
(
1996
).
Recognition of two classes of oligoproline sequences in profilin-mediated acceleration of actin-based Shigella motility.
J. Cell Biol
133
,
49
59
This content is only available via PDF.