The gap junction protein connexin43 is a phosphoprotein that typically migrates as three bands (nonphosphorylated, P1 and P2) during polyacrylamide gel electrophoresis. The electrophoretic mobility of connexin43 from mitotic cells was distinctly reduced to a form (P3) that migrated slower than P2 from Rat1 cells prepared by shakeoff of nocodazole-treated and untreated cultures. Mitotic FT210 cells, which contain a temperature-sensitive mutation in the p34(cdc2) kinase, showed abundant levels of the P3 connexin43 when maintained at the permissive temperature where p34(cdc2) is active. In contrast, nocodozole-treated FT210 cells grown at the nonpermissive temperature did not contain P3 connexin43. These results indicated that generation of the P3 connexin43 was dependent upon active p34(cdc2)/cyclin B kinase. Although the p34(cdc2)kinase phosphorylated connexin43 in vitro on peptides containing serine 255, the major phosphotryptic peptides in P3 connexin43 from mitotic cells appeared to be the consequence of another protein kinase(s), which may be activated by the p34(cdc2)/cyclin B kinase. The P3 connexin43 exhibited a marked redistribution from cell-cell plasma membrane interfaces to multiple, distinctly stained cytoplasmic structures. These events may be part of the dramatic structural changes observed in mitotic cells undergoing cell rounding and cytokinesis. Results of initial studies using inhibitors of protein degradative and synthetic pathways suggested the likelihood that protein degradation and synthesis participate in the disappearance of the P3 connexin43 and restoration of the pattern of connexin43 isoforms observed in nonmitotic cells.
Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase
P.D. Lampe, W.E. Kurata, B.J. Warn-Cramer, A.F. Lau; Formation of a distinct connexin43 phosphoisoform in mitotic cells is dependent upon p34cdc2 kinase. J Cell Sci 15 March 1998; 111 (6): 833–841. doi: https://doi.org/10.1242/jcs.111.6.833
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. We have a limited number of spaces left so sign up now! Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4491)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4491)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Cell scientist to watch: Gautam Dey

We interviewed Gautam Dey, who became a group leader at EMBL in Heidelberg, Germany, in 2021. His lab investigates the fundamental organisational principles and evolutionary dynamics of the nuclear compartment across eukaryotes.
Mechanisms of eukaryotic transcription termination at a glance

Check out our latest Cell Science at a Glance article and accompanying poster for an overview of the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.