Laminin 1 (alpha1beta1gamma1) and laminin 5 (alpha3beta3gamma2) induce cell adhesion with different involvement of integrins: both are ligands for the alpha6beta1 integrin, while alpha3beta1 integrin has affinity for laminin 5 only. These two laminin isoforms therefore provide good models to investigate whether alpha3beta1 and alpha6beta1 integrins play different roles in signal transduction and in focal adhesion formation. Laminin 1 or 5 induced adhesion of normal human skin fibroblasts to a similar extent but promoted different overall cell shapes. On laminin 1 the fibroblasts formed mainly filopodia-like structures, while on laminin 5 they developed lamellipodias. Staining of fibrillar actin with fluorescein-phalloidin revealed a similar organisation of the actin cytoskeleton on both substrates. However, integrin subunits and several cytoskeletal linker proteins, including vinculin, talin, and paxillin, showed an isoform-specific arrangement into focal adhesions. On laminin 1 they were recruited into thick and short aggregates localized at the termini of actin stress fibers, while on laminin 5 they appeared as dots or streaks clustered on a long portion of actin microfilaments. To test whether the differing affinity of laminin 1 or 5 for alpha3beta1 integrin would explain the formation of morphologically different focal adhesions, cells were seeded on laminin 1 under conditions in which alpha3beta1 integrins were occupied by a function-blocking antibody. This resulted in the formation of focal adhesions similar to that observed on laminin 5, where the integrin is occupied by its natural ligand. These results provide the first evidence for a cross-talk between alpha3beta1 and alpha6beta1 integrins and indicate that occupancy of alpha3beta1 integrins results in a trans-dominant regulation of alpha6beta1 integrin clustering and of focal adhesions. It suggests that recruitment of integrins and cytoskeletal linker proteins are laminin isoform-specific and that tissue specific expression of laminin isoforms might modulate cell behavior by the activation of distinct sets of integrins and by the induction of distinct molecular assemblies within the cell adhesion signaling complexes.

Aumailley
M.
,
Krieg
T.
,
Razaka
G.
,
Muller
P. K.
,
Bricaud
H.
(
1982
).
Influence of cell density on collagen biosynthesis in fibroblast cultures.
Biochem. J
206
,
505
510
Aumailley
M.
,
Mann
K.
,
von der Mark
H.
,
Timpl
R.
(
1989
).
Cell attachment properties of collagen VI and Arg-Gly-Asp dependent binding to its2(VI) and 3(VI) chains.
Exp. Cell Res
181
,
463
474
Aumailley
M.
,
Krieg
T.
(
1996
).
Laminins: a family of diverse multifunctional molecules of basement membranes.
J. Invest. Dermatol
106
,
209
214
Briesewitz
R.
,
Kern
A.
,
Marcantonio
E. E.
(
1993
).
Ligand-dependent and-independent integrin focal contact localization: the role of thechain cytoplasmic domain.
Mol. Biol. Cell
4
,
593
604
Brown
J. C.
,
Wiedemann
H.
,
Timpl
R.
(
1994
).
Protein binding and cell adhesion properties of two laminin isoforms (AmB1eB2e, AmB1sB2e) from human placenta.
J. Cell Sci
107
,
329
338
Burgeson
R. E.
,
Chiquet
M.
,
Deutzmann
R.
,
Ekblom
P.
,
Engel
J.
,
Kleinman
H. K.
,
Martin
G. R.
,
Meneguzzi
G.
,
Paulsson
M.
,
Sanes
J.
,
Timpl
R.
,
Tryggvason
K.
,
Yamada
Y.
,
Yurchenco
P. D.
(
1994
).
A new nomenclature for laminins.
Matrix Biol
14
,
209
211
Burridge
K.
,
Fath
K.
,
Kelly
T.
,
Nuckolls
G.
,
Turner
C.
(
1988
).
Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton.
Annu. Rev. Cell. Biol
4
,
487
525
Carter
W. G.
,
Kaur
P.
,
Gil
S. G.
,
Gahr
P. J.
,
Wayner
E. A.
(
1990
).
Distinct functions for integrins3 1 in focal adhesions and6 4/bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes.
J. Cell Biol
111
,
3141
3154
Carter
W. G.
,
Ryan
M. C.
,
Gahr
P. J.
(
1991
).
Epiligrin, a new cell adhesion ligand for integrin3 1 in epithelial basement membranes.
Cell
65
,
599
610
Clark
E. A.
,
Brugge
J. S.
(
1995
).
Integrins and signal transduction pathways: the road taken.
Science
268
,
233
238
Colognato-Pyke
H.
,
O'Rear
J. J.
,
Yamada
Y.
,
Carbonetto
S.
,
Cheng
Y.-S.
,
Yurchenco
P. D.
(
1995
).
Mapping of network-forming, heparin-binding, and1 1 integrin-recognition sites within the-chain short arm of laminin-1.
J. Biol. Chem
270
,
9398
9406
Delwel
G. O.
,
Hogervorst
F.
,
Kuikman
I.
,
Paulsson
M.
,
Timpl
R.
,
Sonnenberg
A.
(
1993
).
Expression and function of the cytoplasmic variants of the integrin6 subunit in transfected K562 cells. Activation-dependent adhesion and interaction with isoforms of laminin.
J. Biol. Chem
268
,
25865
25875
Delwel
G. O.
,
De Melker
A. A.
,
Hogervorst
F.
,
Jaspars
L. H.
,
Fles
D. L. A.
,
Kuikman
I.
,
Lindblom
A.
,
Paulsson
M.
,
Timpl
R.
,
Sonnenberg
A.
(
1994
).
Distinct and overlapping ligand specificities of the3A 1 and6A 1 integrins: recognition of laminin isoforms.
Mol. Biol. Cell
5
,
203
215
Deutzmann
R.
,
Aumailley
M.
,
Wiedemann
H.
,
Pysny
W.
,
Timpl
R.
,
Edgar
D.
(
1990
).
Cell adhesion, spreading and neurite stimulation by laminin fragment E8 depends on maintenance of secondary and tertiary structure in its rod and globular domain.
Eur. J. Biochem
191
,
513
522
Diaz-Gonzalez
F.
,
Forsyth
J.
,
Steiner
B.
,
Ginsberg
M. H.
(
1996
).
Trans-dominant inhibition of integrin function.
Mol. Biol. Cell
7
,
1939
1951
DiPersio
C. M.
,
Shah
S.
,
Hynes
R. O.
(
1995
).
3A 1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins.
J. Cell Sci
108
,
2321
2326
Dowling
J.
,
Yu
Q. C.
,
Fuchs
E.
(
1996
).
4 integrin is required for hemidesmosome formation, cell adhesion and cell survival.
J. Cell Biol
134
,
559
572
Ekblom
M.
,
Klein
G.
,
Mugrauer
G.
,
Fecker
L.
,
Deutzmann
R.
,
Timpl
R.
,
Ekblom
P.
(
1990
).
Transient and locally restricted expression of laminin A chain mRNA by developing epithelial cells during kidney organogenesis.
Cell
60
,
337
346
Elices
M. J.
,
Urry
L. A.
,
Hemler
M. E.
(
1991
).
Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by ARG-GLY-ASP peptide and by divalent cations.
J. Cell Biol
112
,
169
181
Fath
L. R.
,
Edgell
C.-J.
,
Burridge
K.
(
1989
).
The distribution of distinct integrins in focal contacts is determined by the substratum composition.
J. Cell Sci
92
,
67
75
Forsberg
E.
,
Lindblom
A.
,
Paulsson
M.
,
Johansson
S.
(
1994
).
Laminin isoforms promote attachment of hepatocytes via different integrins.
Exp. Cell Res
215
,
33
39
Goodman
S. L.
,
Deutzmann
R.
,
von der Mark
K.
(
1987
).
Two distinct cell-binding domains in laminin can independently promote nonneuronal cell adhesion and spreading.
J. Cell Biol
105
,
589
598
Goodman
S. L.
,
Aumailley
M.
,
von der Mark
H.
(
1991
).
Multiple cell surface receptors for the short arms of laminin:1 1 integrin and RGD-dependent proteins mediate cell attachment only to domains III in murine tumor laminin.
J. Cell Biol
113
,
931
941
Grenz
H.
,
Carbonetto
S.
,
Goodman
S. L.
(
1993
).
3 1 integrin ismoved into focal contacts in kidney mesangial cells.
J. Cell Sci
105
,
739
751
Hall
A.
(
1994
).
Small GTP-binding proteins and the regulation of the actin cytoskeleton.
Annu. Rev. Cell Biol
10
,
31
54
Hall
D. E.
,
Reichardt
L. F.
,
Crowley
E.
,
Holley
B.
,
Moezzi
H.
,
Sonnenberg
A.
,
Damsky
C. H.
(
1990
).
The1/ 1 and6/ 1 integrin heterodimers mediate cell attachment to disctinct sites on laminin.
J. Cell Biol
110
,
2175
2184
Henry
M. D.
,
Campbell
K. P.
(
1996
).
Dystroglycan: an extracellular matrix receptor linked to the cytoskeleton.
Curr. Opin. Cell Biol
8
,
625
631
Hynes
R. O.
(
1992
).
Integrins: versatility, modulation, and signaling in cell adhesion.
Cell
69
,
11
25
Juliano
R. L.
,
Haskill
S.
(
1993
).
Signal transduction from the extracellular matrix.
J. Cell Biol
120
,
577
585
Kramer
R. H.
,
Vu
M. P.
,
Cheng
Y.-F.
,
Ramos
D. M.
,
Timpl
R.
,
Waleh
N.
(
1991
).
Laminin-binding integrin7 1: functional characterization and expression in normal and malignant melanocytes.
Cell Regul
2
,
805
817
Languino
L. R.
,
Gehlsen
K. R.
,
Wayner
E. A.
,
Carter
W. G.
,
Engvall
E.
,
Ruoslahti
E.
(
1989
).
Endothelial cells use2 1 integrin as a laminin receptor.
J. Cell Biol
109
,
2455
2462
Lentz
S. I.
,
Miner
J. H.
,
Sanes
S. R.
,
Snider
W. D.
(
1997
).
Distribution of the ten known laminin chains in the pathways and targets of developing sensory axons.
J. Comp. Neurol
378
,
547
561
Luna
E. J.
,
Hitt
A. L.
(
1992
).
Cytoskeleton-plasma membrane interactions.
Science
258
,
955
964
Mercier
I.
,
Lechaire
J.-P.
,
Desmouliere
A.
,
Gaill
F.
,
Aumailley
M.
(
1996
).
Interactions of human skin fibroblasts with monomeric or fibrillar collagens induce different organization of the cytoskeleton.
Exp. Cell Res
225
,
245
256
Miner
J. H.
,
Patton
B. L.
,
Lentz
S. I.
,
Gilbert
D. J.
,
Snider
W. D.
,
Jenkins
N. A.
,
Copeland
N. G.
,
Sanes
J. R.
(
1997
).
The lamininchains: expression, developmental transitions, and chromosomal locations of 1–5, identification of heterotrimeric laminins 8–11, and cloning of a novel3 isoform.
J. Cell Biol
137
,
685
701
Niessen
C. M.
,
van der Raaij-Helmer
M. H.
,
Hulsman
E. H.
,
van der Neut
R.
,
Jonkman
M. F.
,
Sonnenberg
A.
(
1996
).
Deficiency of the integrin4 subunit in junctional epidermolysis bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion properties.
J. Cell Sci
109
,
1695
1706
Paulsson
M.
,
Aumailley
M.
,
Deutzmann
R.
,
Timpl
R.
,
Beck
K.
,
Engel
J.
(
1987
).
Laminin-nidogen complex. Extraction with chelating agents and structural characterization.
Eur. J. Biochem
166
,
11
19
Pfaff
M.
,
Göhring
W.
,
Brown
J.
,
Timpl
R.
(
1994
).
Binding of purified collagen receptors (1 1,2 1) and RGD-dependent integrins to laminins and laminin fragments.
Eur. J. Biochem
225
,
975
984
Rousselle
P.
,
Aumailley
M.
(
1994
).
Kalinin is more efficient than laminin in promoting adhesion of primary keratinocytes and some other epithelial cells and has a different requirement for integrin receptors.
J. Cell Biol
125
,
205
214
Rousselle
P.
,
Golbik
R.
,
van der Rest
M.
,
Aumailley
M.
(
1995
).
Structural requirement for cell adhesion to kalinin (laminin 5).
J. Biol. Chem
270
,
13766
13770
Rousselle
P.
,
Lunstrum
G. P.
,
Keene
D. R.
,
Burgeson
R. E.
(
1991
).
Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments.
J. Cell Biol
114
,
567
576
Sastry
S.
,
Horwitz
A. F.
(
1993
).
Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling.
Curr. Opin. Cell Biol
5
,
819
831
Sonnenberg
A.
,
Linders
C. J. T.
,
Modderman
P. W.
,
Damsky
C. H.
,
Aumailley
M.
,
Timpl
R.
(
1990
).
Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that6 1 but not6 4 functions as a major receptor for fragment E8.
J. Cell Biol
110
,
2145
2155
Sonnenberg
A.
,
Linders
C. J. T.
,
Daams
J. H.
,
Kennel
S. J.
(
1990
).
The6 1 (VLA-6) and6 4 protein complexes: tissue distribution and biochemical properties.
J. Cell Sci
96
,
207
217
Sonnenberg
A.
,
Gehlsen
K.
,
Aumailley
M.
,
Timpl
R.
(
1991
).
Isolation of6 1 integrins from platelets and adherent cells by affinity chromatography on mouse laminin fragment E8 and human laminin pepsin fragment.
Exp. Cell Res
197
,
234
244
Tarone
G.
,
Cirillo
D.
,
Giancotti
P. G.
,
Comoglio
G. M.
,
Marchisio
P. C.
(
1985
).
Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes.
Exp. Cell Res
159
,
141
157
Tawil
N.
,
Wilson
P.
,
Carbonetto
S.
(
1993
).
Integrins in point contacts mediate cell spreading: factors that regulate integrin accumulation in point contacts vs. focal contacts.
J. Cell Biol
120
,
261
271
Tiger
C. F.
,
Champliaud
M.-F.
,
Pedrosa-Domello
F.
,
Thornell
L. E.
,
Ekblom
P.
,
Gullberg
D.
(
1997
).
Presence of laminin5 chain and lack of laminin 1 chain during human muscle development and in muscular dystrophies.
J. Biol. Chem
272
,
28590
28595
Timpl
R.
,
Brown
J. C.
(
1994
).
The laminins.
Matrix Biol
14
,
275
281
van der Neut
R.
,
Krimpenfort
P.
,
Calafat
J.
,
Niessen
C. M.
,
Sonnenberg
A.
(
1996
).
Epithelial detachment due to absence of hemidesmosomes in integrin4 null mice.
Nat. Genet
13
,
366
369
Vidal
F.
,
Aberdam
D.
,
Miquel
C.
,
Christiano
A. M.
,
Pulkkinen
L.
,
Uitto
J.
,
Ortonne
J. P.
,
Meneguzzi
G.
(
1995
).
Integrin4 mutations associated with junctional epidermolysis bullosa with pyloric atresia.
Nature Genet
10
,
229
234
Wayner
E. A.
,
Gil
S. G.
,
Murphy
G. F.
,
Wilke
M. S.
,
Carter
W. G.
(
1993
).
Epiligrin, a component of epithelial basement membranes, is an adhesive ligand for3 1 positive T lymphocytes.
J. Cell Biol
121
,
1141
1152
von der Mark
H.
,
Durr
J.
,
Sonnenberg
A.
,
von der Mark
K.
,
Deutzmann
R.
,
Goodmann
S. L.
(
1991
).
Skeletal myoblasts utilize a novel1 series integrin and not 61 for binding to the E8 and T8 fragments of laminin.
J. Biol. Chem
266
,
23593
23601
Weitzman
J. B.
,
Pujades
C.
,
Hemler
M. E.
(
1997
).
Integrinchain cytoplasmic tails regulate ‘antibody-redirected’ cell adhesion, independently of ligand binding.
Eur. J. Immunol
27
,
78
84
Woods
A.
,
Couchman
J. R.
(
1992
).
Protein kinase C involvement in focal adhesion formation.
J. Cell Sci
101
,
277
290
This content is only available via PDF.