Using a computerized fluorescence microscope system to observe fluorescently stained cellular structures in vivo, we have examined the dynamics of chromosomes and microtubules during the process of meiosis in the fission yeast Schizosaccharomyces pombe. Fission yeast meiotic prophase is characterized by a distinctive type of nuclear movement that is led by telomeres clustered at the spindle-pole body (the centrosome-equivalent structure in fungi): the nucleus oscillates back and forth along the cell axis, moving continuously between the two ends of the cell for some hours prior to the meiotic divisions. To obtain a dynamic view of this oscillatory nuclear movement in meiotic prophase, we visualized microtubules and chromosomes in living cells using jellyfish green fluorescent protein fused with alpha-tubulin and a DNA-specific fluorescent dye, Hoechst 33342, respectively. Continuous observation of chromosomes and microtubules in these cells demonstrated that the oscillatory nuclear movement is mediated by dynamic reorganization of astral microtubules originating from the spindle-pole body. During each half-oscillatory period, the microtubules extending rearward from the leading edge of the nucleus elongate to drive the nucleus to one end of the cell. When the nucleus reversed direction, its motion during the second half of the oscillation was not driven by the same microtubules that drove its motion during the first half, but rather by newly assembled microtubules. Reversible inhibition of nuclear movement by an inhibitor of microtubule polymerization, thiabendazole, confirmed the involvement of astral microtubules in oscillatory nuclear movement. The speed of the movement fluctuated within a range 0 to 15 micron/minute, with an average of about 5 microm/minute. We propose a model in which the oscillatory nuclear movement is mediated by dynamic instability and selective stabilization of astral microtubules.

REFERENCES

Adachi
Y.
,
Toda
T.
,
Niwa
O.
,
Yanagida
M.
(
1986
).
Differential expressions of essential and nonessential-tubulin genes in Schizosaccharomyces pombe.
Mol. Cell. Biol
6
,
2168
2178
Baker
J.
,
Theurkauf
W. E.
,
Schubiger
G.
(
1993
).
Dynamic changes in microtubule configuration correlate with nuclear migration in the preblastoderm Drosophila embryo.
J. Cell Biol
122
,
113
121
Briedis
A.
,
Elinson
R. P.
(
1982
).
Suppression of male pronuclear movement in frog eggs by hydrostatic pressure and deuterium oxide yields androgenetic haploids.
J. Exp. Zool
222
,
45
57
Carminati
J. L.
,
Stearns
T.
(
1997
).
Microtubules orient the mitotic spindle in yeast through dynein-dependent interaction with the cell cortex.
J. Cell Biol
138
,
629
641
Chikashige
Y.
,
Ding
D. Q.
,
Funabiki
H.
,
Haraguchi
T.
,
Mashiko
S.
,
Yanagida
M.
,
Hiraoka
Y.
(
1994
).
Telomere-led premeiotic chromosome movement in fission yeast.
Science
264
,
270
273
Chikashige
Y.
,
Ding
D. Q.
,
Imai
Y.
,
Yamamoto
M.
,
Haraguchi
T.
,
Hiraoka
Y.
(
1997
).
Meiotic nuclear reorganization: switching the position of centromeres and telomeres in fission yeast Schizosaccharomyces pombe.
EMBO J
16
,
193
202
Funabiki
H.
,
Hagan
I. M.
,
Uzawa
S.
,
Yanagida
M.
(
1993
).
Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast.
J. Cell Biol
121
,
961
976
Galatis
B.
,
Apostolakos
P.
,
Palafoutas
D.
(
1986
).
Studies on theformation of ‘floating’ guard cell mother cells in Anemia.
J. Cell Sci
80
,
29
55
Hagan
I. M.
,
Hyams
J. S.
(
1988
).
The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe.
J. Cell Sci
89
,
343
357
Hagan
I.
,
Yanagida
M.
(
1995
).
The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability.
J. Cell Biol
129
,
1033
1047
Hamaguchi
M.
,
Hiramoto
Y.
(
1986
).
Analysis of the role of astral rays in pronuclear migration in sand dollar eggs by the colcemid-UV method.
Dev Growth Differ
28
,
143
146
Heim
R.
,
Cubitt
A. B.
,
Tsien
R. Y.
(
1995
).
Improved green fluorescence.
Nature
373
,
663
664
Hiraoka
Y.
,
Toda
T.
,
Yanagida
M.
(
1984
).
The NDA3 gene of fission yeast encodes-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis.
Cell
39
,
349
358
Hiraoka
Y.
,
Swedlow
J. R.
,
Paddy
M. R.
,
Agard
D. A.
,
Sedat
J. W.
(
1991
).
Three-dimensional multiple-wavelength fluorescence microscopy for the structural analysis of biological phenomena.
Semin. Cell Biol
2
,
153
165
Hyman
A. A.
,
White
J. G.
(
1987
).
Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans.
J. Cell Biol
105
,
2123
2135
Hyman
A. A.
(
1989
).
Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining centrosome position.
J. Cell Biol
109
,
1185
1193
Kennard
J. L.
,
Cleary
A. L.
(
1997
).
Pre-mitotic nuclear migration in subsidiary mother cells of Tradescantia occurs in G1of the cell cycle and requires F-actin.
Cell Motil. Cytoskel
36
,
55
67
Kirschner
M.
,
Mitchison
T.
(
1986
).
Beyond self-assembly: from microtubules to morphogenesis.
Cell
45
,
329
342
Masuda
H.
,
Sevik
M.
,
Cande
W. Z.
(
1992
).
In vitro microtubule-nucleating activity of spindle pole bodies in fission yeast Schizosaccharomyces pombe: cell cycle-dependent activation in Xenopus cell-free extracts.
J. Cell Biol
117
,
1055
1066
Mata
J.
,
Nurse
P.
(
1977
).
tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell.
Cell
89
,
939
949
Maundrell
K.
(
1993
).
Thiamine-repressible expression vectors pREP and pRIP for fission yeast.
Gene
123
,
127
130
Mitchison
T.
,
Kirschner
M.
(
1984
).
Microtubule assembly nucleated by isolated centrosomes.
Nature
312
,
232
237
Mitchison
T.
,
Kirschner
M.
(
1984
).
Dynamic instability of microtubule growth.
Nature
312
,
237
242
Moreno
S.
,
Klar
A.
,
Nurse
P.
(
1991
).
Molecular genetic analysis of fission yeast Schizosaccharomyces pombe.
Methods Enzymol
194
,
795
823
Navara
C. S.
,
First
N. L.
,
Schatten
G.
(
1994
).
Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster.
Dev. Biol
162
,
29
40
Oakley
B. R.
,
Morris
N. R.
(
1980
).
Nuclear movement is-tubulin-dependent in Aspergillus nidulans.
Cell
19
,
255
262
Oakley
B. R.
,
Morris
N. R.
(
1981
).
A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly.
Cell
24
,
837
845
Palmer
R. E.
,
Sullivan
D. S.
,
Huffaker
T.
,
Koshland
D.
(
1992
).
Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae.
J. Cell Biol
119
,
583
593
Paschal
B. M.
,
Vallee
R. B.
(
1987
).
Retrograde transport by the microtubule-associated protein MAP 1C.
Nature
330
,
181
183
Robinow
C. F.
(
1977
).
The number of chromosomes in Schizosaccharomyces pombe: light microscopy of stained preparations.
Genetics
87
,
491
197
Rouviere
C.
,
Houliston
E.
,
Carre
D.
,
Chang
P.
,
Sardet
C.
(
1994
).
Characteristics of pronuclear migration in Beroe ovata.
Cell Motil. Cytoskel
29
,
301
311
Schatten
G.
(
1982
).
Motility during fertilization.
Int. Rev. Cytol
79
,
59
163
Sullivan
D. S.
,
Huffaker
T. C.
(
1992
).
Astral microtubules are not required for anaphase B in Saccharomyces cerevisiae.
J. Cell Biol
119
,
379
388
Svoboda
A.
,
Bähler
J.
,
Kohli
J.
(
1995
).
Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe.
Chromosoma
104
,
203
214
Tange
Y.
,
Horio
T.
,
Shimanuki
M.
,
Ding
D.-Q.
,
Hiraoka
Y.
,
Niwa
O.
(
1998
).
A novel fission yeast gene tht1+is required for the fusion of nuclear envelopes during karyogamy.
J. Cell Biol
140
,
247
258
Toda
T.
,
Adachi
Y.
,
Hiraoka
Y.
,
Yanagida
M.
(
1984
).
Identification of the pleiotropic cell division cycle gene NDA2 as one of two different alpha-tubulin genes in Schizosaccharomyces pombe.
Cell
37
,
233
242
Vallee
R.
(
1993
).
Molecular analysis of the microtubule motor dynein.
Proc. Nat. Acad. Sci. USA
90
,
8769
8772
von Dassow
G.
,
Schubiger
G.
(
1994
).
How an actin network might cause fountain streaming and nuclear migration in the syncytial Drosophila embryo.
J. Cell Biol
127
,
1637
1653
Woods
A.
,
Sherwin
T.
,
Sasse
R.
,
MacRae
T. H.
,
Baines
A. J.
,
Gull
K.
(
1989
).
Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies.
J. Cell Sci
93
,
491
500
Xiang
X.
,
Beckwith
S. M.
,
Morris
N. R.
(
1994
).
Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans.
Proc. Nat. Acad. Sci. USA
91
,
2100
2104
Yeh
E.
,
Skibbens
R. V.
,
Cheng
J. W.
,
Salmon
E. D.
,
Bloom
K.
(
1995
).
Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae.
J. Cell Biol
130
,
687
700
Zalokar
M.
,
Erk
I.
(
1976
).
Division and migration of nuclei during early embryogenesis of Drosophila melanogaster.
J. Microsc. Biol. Cell
25
,
97
106
This content is only available via PDF.