In addition to its role in mediating leukocyte adherence to and migration across the endothelium, intercellular adhesion molecule (ICAM)-1 on the surface of interstitial cells has been implicated as a principal adhesion molecule controlling leukocyte infiltration at inflammatory sites. The present study demonstrates that leukocyte binding to fibroblasts isolated from both the human renal cortex and lung and to endothelial cells induced the de novo synthesis of ICAM-1 mRNA and protein through the ICAM-1-dependent activation of the cultured cells. This was mimicked by specifically cross-linking the ICAM-1 receptor with anti-ICAM-1 antibodies. Following cross-linking there was a two- to threefold increase in the steady state levels of ICAM-1 mRNA isolated from the cells. The expression of this mRNA peaked at 1–3 hours and was dose-dependent on the concentration of secondary cross-linking antibody. Peak protein expression was between 18 and 48 hours after cross-linking. Additional data demonstrated a similar increase in the expression of VCAM-1 following ICAM-1 cross-linking. In contrast, there was no reponse as a result of incubation with an isotype-matched control antibody. Both the binding of leukocytes and the cross-linking of ICAM-1 triggered a rise in cytosolic free calcium as the result, in part, of a calcium influx from the extracellular medium. Using BAPTA-AM to chelate intracellular calcium ions indicated that this increase in cytosolic free calcium was directly involved in the initiation of adhesion molecule upregulation. The present study demonstrates that both endothelial cells and fibroblasts can be stimulated by the direct cell surface interaction of ICAM-1 with its ligands on inflammatory cells. One phenotypic change resulting from this interaction is the upregulated synthesis and expression of more cellular adhesion molecules. This may have profound implications for the control and persistence of a leukocyte infiltrate and the progression of inflammatory disease.
Cellular activation through the ligation of intercellular adhesion molecule-1
A. Clayton, R.A. Evans, E. Pettit, M. Hallett, J.D. Williams, R. Steadman; Cellular activation through the ligation of intercellular adhesion molecule-1. J Cell Sci 15 February 1998; 111 (4): 443–453. doi: https://doi.org/10.1242/jcs.111.4.443
Download citation file:
Advertisement
Cited by
2021 JCS Prize winner announced
-JCSPrize.png?versionId=3749)
We are pleased to announce that the winner of the 2021 JCS Prize is Lee Dolat for his paper entitled ‘An endometrial organoid model of interactions between Chlamydia and epithelial and immune cells’.
Propose a new Workshop
-GSWorkshop.png?versionId=3749)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Cell scientist to watch: Christian Münch
-CSTW.png?versionId=3749)
Journal of Cell Science interviewed Christian Münch, who established his independent research group in 2016 at Goethe University Frankfurt. His lab studies cellular stress responses to mitochondrial protein misfolding, infection and disease, as well as developing proteomics methods.
Essay series: Equity, diversity and inclusion in cell biology
-EssaySeries.png?versionId=3749)
The JCS Essay Series is an initiative to help showcase and provide a platform for voices in the field of cell biology. The first topic we covered was 'Equity, diversity and inclusion in cell biology', and the winning and runner up essays are now available to read.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3749)
We are excited to announce the launch of the FocalPlane Network, an international directory of microscopists. The idea behind the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.