We have shown previously that intracellular phagosome movement requires microtubules. Here we provide evidence that within cells phagosomes display two different kinds of microtubule-based movements in approximately equal proportions. The first type occurs predominantly in the cell periphery, often shortly after the phagosome is formed, and at speeds below 0.1 microm/second. The second is faster (0.2-1.5 micron/second) and occurs mainly after phagosomes have reached the cell interior. Treating cells with nanomolar concentrations of taxol or nocodazole alters microtubule dynamics without affecting either total polymer mass or microtubule organisation. Such treatments slow the accumulation of phagosomes in the perinuclear region and reduce the number of slow movements by up to 50% without affecting the frequency of fast movements. This suggests that a proportion of slow movements are mediated by microtubule dynamics while fast movements are powered by microtubule motors. In macrophages, interphase microtubules radiate from the microtubule organising centre with their plus-end towards the cell periphery. To understand the behaviour of ‘early’ phagosomes at the cell periphery we investigated their ability to bind microtubule plus-ends in vitro. We show that early phagosomes have a strong preference for microtubule plus-ends, whereas ‘late’ phagosomes do not, and that plus-end affinity requires the presence of microtubule-associated proteins within cytosol. We suggest that phagosomes can bind to the plus-ends of dynamic microtubules and move by following their shrinkage or growth.

REFERENCES

REFERENCES
Allan
V. J.
,
Vale
R. D.
(
1994
).
Movement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment.
J. Cell Sci
107
,
1885
1897
Aniento
F.
,
Emans
N.
,
Griffiths
G.
,
Gruenberg
J.
(
1993
).
Cytoplasmic dynein-dependent vesicular transport from early to late endosomes.
J. Cell Biol
123
,
1373
1387
Bikle
D.
,
Tilney
L. G.
,
Porter
K. R.
(
1966
).
Microtubules and pigment granule migration in the melanophores of Fundulus heteroclitus.
Protoplasma
61
,
322
335
Blocker
A.
,
Severin
F. F.
,
Habermann
A.
,
Hyman
A. A.
,
Griffiths
G.
,
Burkhardt
J. K.
(
1996
).
MAP-dependent binding of phagosomes to microtubules.
J. Biol. Chem
271
,
3803
3811
Blocker
A.
,
Severin
F. F.
,
Burkhardt
J. K.
,
Bingham
J. B.
,
Yu
H.
,
Olivo
J.-C.
,
Schroer
T. A.
,
Hyman
A. A.
,
Griffiths
G.
(
1997
).
Molecular requirements for bi-directional movement of phagosomes along microtubules.
J. Cell Biol
137
,
113
129
Carlier
M.-F.
(
1989
).
Role of nucleotide hydroylsis in the dynamics of actin filaments and microtubules.
Int. Rev. Cytol
115
,
139
170
Cramer
L. P.
,
Mitchison
T. J.
(
1995
).
Myosin is involved in postmitotic cell spreading.
J. Cell Biol
131
,
179
189
Cooper
J. A.
(
1987
).
Effects of cytochalasin and phalloidin on actin.
J. Cell Biol
105
,
1473
1478
Cooper
M. S.
,
Cornell-Bell
A. H.
,
Chernjavsky
A.
,
Dani
J. W.
,
Smith
S. J.
(
1990
).
Tubulovesicular processes emerge from trans-Golgi cisternae, extend along microtubules, and interlink adjacent trans-Golgi elements into a reticulum.
Cell
61
,
135
145
Coue
M.
,
Lombillo
V. A.
,
McIntosh
R. J.
(
1991
).
Microtubule depolymerisation promotes particle and chromosome movement in vitro.
J. Cell Biol
112
,
1165
1175
Cudmore
S.
,
Cossart
P.
,
Griffiths
G.
,
Way
M.
(
1995
).
Actin-based motility of vaccinia virus.
Nature
378
,
636
638
D'Arcy Hart
P.
,
Young
M. R.
,
Jorgan
M. M.
,
Perkins
W. J.
,
Geisow
M. J.
(
1983
).
Chemical inhibitors of phagosome-lysosome fusion in cultured macrophages also inhibit saltatory lysosomal movements.
J. Exp. Med
158
,
477
492
Desjardins
M.
,
Celis
J. E.
,
van Meer
G.
,
Dieplinger
H.
,
Jahraus
A.
,
Griffiths
G.
,
Huber
L. A.
(
1994
).
Molecular characterization of phagosomes.
J. Biol. Chem
269
,
32194
32200
Desjardins
M.
,
Huber
L. A.
,
Parton
R. G.
,
Griffiths
G.
(
1994
).
Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus.
J. Cell Biol
124
,
677
688
Drechsel
D. N.
,
Kirschner
M. W.
(
1994
).
The minimum GTP cap required to stabilize microtubules.
Curr. Biol
4
,
1053
1061
Goldstein
I. S.
,
Hoffstein
J.
,
Gallin
J.
,
Weissmann
G.
(
1973
).
Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement.
Proc. Nat. Acad. Sci. USA
70
,
2916
2920
Gruenberg
J.
,
Griffiths
G.
,
Howell
K. E.
(
1989
).
Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle function in vitro.
J. Cell Biol
108
,
1301
1316
Heuser
J.
,
Morisaki
J. H.
(
1992
).
Time-lapse video microscopy of endosomal ‘rocketing’ in La/Zn treated cells.
Mol. Biol. Cell
3
,
172
–.
Hopkins
C. R.
,
Gibson
A.
,
Shipman
M.
,
Miller
K.
(
1990
).
Movementof internalized ligand-receptor complexes along a continuous endosomal reticulum.
Nature
346
,
335
339
Inoue
S.
,
Salmon
E. D.
(
1995
).
Force generation by microtubule assembly/disassembly in mitosis and related movements.
Mol. Biol. Cell
6
,
1619
1640
Jahraus
A.
,
Storrie
B.
,
Griffiths
G.
,
Desjardins
D.
(
1994
).
Evidence for retrograde traffic between terminal lysosomes and the prelysosomal/late endosome compartment.
J. Cell Sci
107
,
145
157
Lee
C.
,
Chen
L. B.
(
1988
).
Dynamic behaviour of the endoplasmic reticulum in living cells.
Cell
54
,
37
46
Liao
G.
,
Nagasaki
T.
,
Gundersen
G. G.
(
1995
).
Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion.
J. Cell Sci
108
,
3473
3483
Lombillo
V. A.
,
Nislow
C.
,
Yen
T. J.
,
Gelfand
V. I.
,
McIntosh
R. J.
(
1995
).
Antibodies to the kinesin motor domain and CENP-E inhibit depolymerisation-dependent motion of chromosomes in vitro.
J. Cell Biol
128
,
107
115
Lombillo
V. A.
,
Stewart
R. J.
,
McIntosh
J. R.
(
1994
).
Kinesin supports minus end-directed, depolymerisation-driven motility of microspheres coupled to shortening microtubules.
Nature
373
,
161
164
Marchand
J. B.
,
Moreau
P.
,
Paoletti
A.
,
Cossart
P.
,
Carlier
M.-F.
,
Pantaloni
D.
(
1995
).
Actin-based movement of Listeria monocytogenes: actin assembly results from the local maintenance of uncapped filament barbed ends at the bacterium surface.
J. Cell Biol
130
,
331
343
Mitchison
T. J.
(
1993
).
Localisation of an exchangeable GTP binding site at the plus end of microtubules.
Science
261
,
1044
1047
Mitchison
M.
,
Kirschner
M. W.
(
1984
).
Microtubule assembly nucleated by isolated centrosomes.
Nature
312
,
232
237
Mitchison
M.
,
Kirschner
M. W.
(
1984
).
Dynamic instability of microtubule growth.
Nature
312
,
237
242
Mitchison
M.
,
Schulze
E.
,
Evans
L.
,
Kirschner
M. W.
(
1986
).
Sites of microtubule assembly and disassembly in the mitotic spindle.
Cell
45
,
515
527
Muller
W. A.
,
Steinman
R. M.
,
Cohn
Z. A.
(
1980
).
The membrane proteins of the vacuolar system I. Analysis by a novel method of intralysosomal iodination.
J. Cell Biol
86
,
304
413
Murphy
D. B.
,
Tilney
L. G.
(
1974
).
The role of microtubules in movement of pigment granules in teleost melanophores.
J. Cell Biol
61
,
757
779
Nguyen Ngoc
S.
,
Briquet-Laugier
F.
,
Boulin
C.
,
Olivo
J.-C.
(
1997
).
Adaptive detection for tracking moving biological objects in video microscopy sequences.
In Proc. IEEE 4th Intern. Conf. on Image Processing, ICIP'97.
Pesanti
E. L.
,
Axiline
S. G.
(
1975
).
Phagolysosome formation in normal and colchicine treated macrophages.
J. Exp. Med
142
,
903
913
Pitt
A.
,
Mayorga
L. S.
,
Schwartz
A. L.
,
Stahl
P. D.
(
1992
).
Transport of phagosomal components to an endosomal compartment.
J. Biol. Chem
267
,
126
132
Porter
K. R.
(
1973
).
Microtubules in intracellular locomotion.
Ciba Foundation Symposium
14
,
149
169
Rieder
C. L.
,
Alexander
S. P.
(
1990
).
Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells.
J. Cell Biol
110
,
81
95
Rodionov
V. I.
,
Lim
S.-S.
,
Gelfand
V. I.
,
Borisy
G. G.
(
1994
).
Microtubule dynamics in fish melanophores.
J. Cell Biol
126
,
1455
1464
Sammak
P. J.
,
Borisy
G. G.
(
1987
).
Direct observation of microtubule dynamics in living cells.
Nature
332
,
724
726
Sammak
P. J.
,
Gorbsky
G. J.
,
Borisy
G. G.
(
1987
).
Microtubule dynamics in vivo: a test of mechanisms of turnover.
J. Cell Biol
104
,
395
405
Scheel
J.
,
Kreis
T. E.
(
1991
).
Motor protein-independent binding of endocytic carrier vesicles to microtubules in vitro.
J. Biol. Chem
266
,
18141
18148
Schulze
E.
,
Kirschner
M.
(
1986
).
Microtubule dynamics in interphase cells.
J. Cell Biol
102
,
1020
1030
Schulze
E.
,
Kirschner
M.
(
1987
).
Dynamic and stable populations of microtubules in interphase cells.
J. Cell Biol
104
,
277
288
Schulze
E.
,
Kirschner
M.
(
1988
).
New features of microtubule behaviour observed in vivo.
Nature
334
,
356
359
Severin
F. F.
,
Sorger
P. K.
,
Hyman
A. A.
(
1997
).
Kinetochores distinguish GTP from GDP forms of the microtubule lattice.
Nature
388
,
888
891
Skibbens
R. V.
,
Skeen
V. P.
,
Salmon
E. D.
(
1993
).
Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism.
J. Cell Biol
122
,
859
875
Stossel
T. P.
,
Pollard
T. D.
,
Mason
R. J.
,
Vaughan
M.
(
1971
).
Vesicles and properties of phagocytic vesicles from polymorphonuclear leukocytes.
J. Clin. Invest
50
,
1745
1757
Terasaki
M.
,
Song
J.
,
Wong
J. R.
,
Weiss
M. J.
,
Chen
L.-B.
(
1986
).
Microtubules and the endoplasmic reticulum are highly interdependent structures.
J. Cell Biol
103
,
1557
1568
Theriot
J. A.
,
Mitchison
T. J.
,
Tilney
L. G.
,
Portnoy
D. A.
(
1992
).
The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerisation.
Nature
357
,
257
260
Vasquez
R. J.
,
Howell
B.
,
Yvon
A.-M. C.
,
Wadsworth
P.
,
Cassimeris
L.
(
1997
).
Nanomolar concentrations of nocodazole alter microtubule dynamic instability in vivo and in vitro.
Mol. Biol. Cell
8
,
973
985
Waterman-Storer
C. M.
,
Gregory
J.
,
Parsons
S. F.
,
Salmon
E. D.
(
1995
).
Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts.
J. Cell Biol
130
,
1161
1169
Waterman-Storer
C. M.
,
Salmon
E. D.
(
1996
).
Dynamic interactions between microtubules and endo-plasmic reticulum membrane tubules in living cells.
Mol. Biol. Cell
7
,
505
–.
Wetzel
M. G.
,
Korn
E. D.
(
1969
).
Phagocytosis of latex beads by Acanthamboeba castellanii (NEFF). III Isolation of the phagocytic vesicles and their membranes.
J. Cell Biol
43
,
90
104
Wolenski
S. J.
,
Cheney
R. E.
,
Forscher
P.
,
Mooseker
M. S.
(
1993
).
In vitro motilities of unconventional myosins: brush border myosin-I and chick brain myosin-V exhibit assay-dependent difference in velocity.
J. Exp. Zool
267
,
33
39
This content is only available via PDF.