Axoplasmic organelles in the giant axon of the squid have been shown to move on both actin filaments and microtubules and to switch between actin filaments and microtubules during fast axonal transport. The objectives of this investigation were to identify the specific classes of axoplasmic organelles that move on actin filaments and the myosin motors involved. We developed a procedure to isolate endoplasmic reticulum (ER) from extruded axoplasm and to reconstitute its movement in vitro. The isolated ER vesicles moved on exogenous actin filaments adsorbed to coverslips in an ATP-dependent manner without the addition of soluble factors. Therefore myosin was tightly bound and not extracted during isolation. These vesicles were identified as smooth ER by use of an antibody to an ER-resident protein, ERcalcistorin/protein disulfide isomerase (EcaSt/PDI). Furthermore, an antibody to squid myosin V was used in immunogold EM studies to show that myosin V localized to these vesicles. The antibody was generated to a squid brain myosin (p196) that was classified as myosin V based on comparisons of amino acid sequences of tryptic peptides of this myosin with those of other known members of the myosin V family. Dual labeling with the squid myosin V antibody and a kinesin heavy chain antibody showed that the two motors colocalized on the same vesicles. Finally, antibody inhibition experiments were performed with two myosin V-specific antibodies to show that myosin V motor activity is required for transport of vesicles on actin filaments in axoplasm. One antibody was made to a peptide in the globular tail domain and the other to the globular head fragment of myosin V. Both antibodies inhibited vesicle transport on actin filaments by greater than 90% compared to controls. These studies provide the first direct evidence that ER vesicles are transported on actin filaments by myosin V. These data confirm the role of actin filaments in fast axonal transport and provide support for the dual filament model of vesicle transport.
Transport of ER vesicles on actin filaments in neurons by myosin V
J.S. Tabb, B.J. Molyneaux, D.L. Cohen, S.A. Kuznetsov, G.M. Langford; Transport of ER vesicles on actin filaments in neurons by myosin V. J Cell Sci 1 November 1998; 111 (21): 3221–3234. doi: https://doi.org/10.1242/jcs.111.21.3221
Download citation file:
Advertisement
Cited by
Reasons to submit to Journal of Cell Science

There are many benefits to publishing in Journal of Cell Science - read more about why you should choose JCS or visit our submission page now.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=5216)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
The Forest of Biologists

The Forest of Biologists is a biodiversity initiative created by The Company of Biologists, with support from the Woodland Trust. For every Research and Review article published in Journal of Cell Science a native tree is planted in a UK forest. In addition to this we are protecting and restoring ancient woodland and are dedicating these trees to our peer reviewers. Visit our virtual forest to learn more.
Propose a new Workshop for 2025

We are now accepting proposals for our 2025 Biologists Workshops programme. As the scientific organiser, your involvement will be focused on the science. We'll take care of all the logistics. In 2025 we'll continue our efforts to diversify our Workshop programme and will be reserving one of our Workshops for an application from a Global South (GS) country to host an event overseas.
FocalPlane Image Competition 2023

FocalPlane’s 2023 image competition is underway, in celebration of the community site’s third birthday. Click here for submission details and information on how to showcase your favourite image.