Ryanodine receptor channels regulate contraction of striated muscle by gating the release of calcium ions from the sarcoplasmic reticulum. Ryanodine receptors are expressed in excitable and non-excitable cells of numerous species, including the nematode C. elegans. Unlike vertebrates, which have at least three ryanodine receptor genes, C. elegans has a single gene encoded by the unc-68 locus. We show that unc-68 is expressed in most muscle cells, and that the phenotypic defects exhibited by unc-68 null mutants result from the loss of unc-68 function in pharyngeal and body-wall muscle cells. The loss of unc-68 function in the isthmus and terminal bulb muscles of the pharynx causes a reduction in growth rate and brood size. unc-68 null mutants exhibit defective pharyngeal pumping (feeding) and have abnormal vacuoles in the terminal bulb of the pharynx. unc-68 is required in body-wall muscle cells for normal motility. We show that UNC-68 is localized in body-wall muscle cells to flattened vesicular sacs positioned between the apical plasma membrane and the myofilament lattice. In unc-68 mutants, the vesicles are enlarged and densely stained. The flattened vesicles in body-wall muscle cells thus represent the C. elegans sarcoplasmic reticulum. Morphological and behavioral phenotypes of unc-68 mutants suggest that intracellular calcium release is not essential for excitation-contraction coupling in C. elegans.

Albertson
D. G.
,
Thomson
J. N.
(
1997
).
The pharynx of Caenorhabditis elegans.
Philos. Trans. R. Soc. Lond. B Biol. Sci
275
,
299
325
Avery
L.
(
1993
).
The genetics of feeding in Caenorhabditis elegans.
Genetics
133
,
897
917
Bennett
D. L.
,
Cheek
T. R.
,
Berridge
M. J.
,
De Smedt
H.
,
Parys
J. B.
,
Missiaen
L.
,
Bootman
M. D.
(
1996
).
Expression and function of ryanodine receptors in nonexcitable cells.
J. Biol. Chem
271
,
6356
6362
Berridge
M. J.
(
1993
).
Inositol trisphosphate and calcium signalling.
Nature
361
,
315
325
Brenner
S.
(
1974
).
The genetics of Caenorhabditis elegans.
Genetics
77
,
71
94
Bhat
M. B.
,
Zhao
J.
,
Takeshima
H.
,
Ma
J.
(
1997
).
Functional calcium release channel formed by the carboxyl-terminal portion of the ryanodine receptor.
Biophys. J
73
,
1329
1336
Block
B. A.
,
O'Brien
J.
,
Franck
J.
(
1996
).
The role of ryanodine receptor isoforms in the structure and function of the vertebrate triad.
Soc. Gen. Physiologists Series
51
,
47
65
Buck
E. D.
,
Nguyen
H. T.
,
Pessah
I. N.
,
Allen
P. D.
(
1997
).
Dyspedic mouse skeletal muscle expresses major elements of the triadic junction but lacks detectable ryanodine receptor protein and function.
J. Biol. Chem
272
,
7360
7367
Callaway
C.
,
Seryshev
A.
,
Wang
J. P.
,
Slavik
K. J.
,
Needleman
D. H.
,
Cantu
C.
,
Wu
J.
,
Jayaraman
T.
,
Marks
A. R.
,
Hamilton
S. L.
(
1994
).
Localization of the high and low affinity 3H-ryanodine binding sites on the skeletal muscle Ca2+release channel.
J. Biol. Chem
280
,
15876
15884
Carl
S. L.
,
Felix
K.
,
Caswell
A. H.
,
Brandt
N. R.
,
Ball
W. J.
,
Vaghy
P. L.
,
Meissner
G.
,
Ferguson
D. G.
(
1995
).
Immunolocalization of sarcolemmal dihydropyridine receptor and sarcoplasmic reticular triadin and ryanodine receptor in rabbit ventricle and atrium.
J. Cell Biol
129
,
673
682
Caterall
W. A.
(
1991
).
Excitation-contraction coupling in vertebrae skeletal muscle: a tale of two calcium channels.
Cell
64
,
871
874
Chalfie
M.
,
Tu
Y.
,
Euskirchen
G.
,
Ward
W. W.
,
Prasher
D. C.
(
1994
).
Green fluorescent protein as a marker for gene expression.
Science
263
,
802
805
Clandinin
T. R.
,
DeMondena
J. A.
,
Sternberg
P. W.
(
1998
).
Inositol trisphosphate mediates a RAS-independent response to LET-23 receptor tyrosine kinase activation in C. elegans.
Cell
92
,
523
533
Coronado
R.
,
Morrissette
J.
,
Sukhareva
M.
,
Vaughan
D. M.
(
1994
).
Structure and function of ryanodine receptors.
Am. J. Physiol
94
,
1485
1504
Fabiato
A.
(
1983
).
Calcium-induced release of calcium from the cardiac sarcplasmic reticulum.
Am. J. Physiol
245
,
1
–.
Fire
A.
,
Harrison
S. W.
,
Dixon
D.
(
1990
).
A modular set of LacZ fusion vectors for studying gene expression in Caenorhabditis elegans.
Gene
93
,
189
198
Francis
G. R.
,
Waterston
R. H.
(
1985
).
Muscle organization in Caenorhabditis elegan: localization of proteins implicated in thin filament attachment and I-band organization.
J. Cell Biol
101
,
1532
1549
Franzini-Armstrong
C.
,
Protasi
F.
(
1997
).
Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions.
Physiol. Rev.
77
,
699
729
Gainer
H.
(
1968
).
The role of calcium in excitation-contraction coupling of lobster muscle.
J. Gen. Physiol
52
,
88
110
Györke
S.
,
Palade
P.
(
1992
).
Calcium-induced calcium release in crayfish skeletal muscle.
J. Physiol
457
,
195
210
Hagiwara
S.
,
Byerly
L.
(
1981
).
Calcium channel.
Annu. Rev. Neurosci
4
,
69
125
Ikemoto
T.
,
Komazaki
S.
,
Takeshima
H.
,
Nishi
M.
,
Noda
T.
,
Iino
M.
,
Endo
H.
(
1997
).
Functional and morphological features from mutant mice lacking both type 1 and type 3 ryanodine receptors.
J. Physiol
501
,
305
312
Kim
Y. K.
,
Valdivia
H. H.
,
Maryon
E. B.
,
Anderson
P.
,
Coronado
R.
(
1992
).
High molecular weight proteins in the nematode C. elegans bind3H-ryanodine and form a large conductance channel.
Biophys. J
63
,
1379
1384
Lee
R. Y. N.
,
Lobel
L.
,
Hnegartner
M.
,
Horvitz
H. R.
,
Avery
L.
(
1997
).
Mutations in the Alpha-1 subunit of an L-type voltage activated calcium channel cause myotonia in Caenorhabditis elegans.
EMBO J
16
,
6066
6076
Maryon
E. B.
,
Coronado
R.
,
Anderson
P.
(
1996
).
unc-68 encodes a ryanodine receptor involved in regulating C. elegans body-wall muscle contraction.
J. Cell Biol
134
,
885
893
Muir
S. R.
,
Sanders
D.
(
1996
).
Pharmacology of Ca2+release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher plants.
FEBS Lett
395
,
39
42
Nelson
M. T.
,
Cheng
H.
,
Rupart
M.
,
Santana
L. F.
,
Bonev
A. D.
,
Knot
H. J.
,
Lederer
W. J.
(
1995
).
Relaxation of arterial smooth muscle by calcium sparks.
Science
270
,
633
636
Rios
E.
,
Ma
J.
,
Gonzalez
A.
(
1991
).
The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle.
J. Muscle Res. Cell Motil
12
,
127
135
Sakube
Y.
,
Ando
H.
,
Kagawa
H.
(
1997
).
An abnormal ketamine response in mutants defective in the ryanodine receptor gene ryr-1 (unc-68) of Caenorhabditis elegans.
J. Mol. Biol
267
,
849
864
Seok
J. H.
,
Xu
L.
,
Kramarcy
N. R.
,
Sealock
R.
,
Meissner
G.
(
1992
).
The 30S lobster skeletal calcium release channel (ryanodine receptor) has functional properties distinct from the mammalian channel proteins.
J. Biol. Chem
267
,
15893
15901
Sutko
J. L.
,
Airey
J. A.
(
1996
).
Ryanodine receptor Ca2+ release channels: does diversity in form equal diversity in function?.
Physiol. Rev.
76
,
1027
71
Takeshima
H.
,
Lino
M.
,
Takekura
H.
,
Nishi
M.
,
Kuno
J.
,
Minowa
O.
,
Takano
H.
,
Noda
T.
(
1994
).
Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene.
Nature
369
,
556
559
Takeshima
H.
,
Yamazawa
T.
,
Ikemoto
T.
,
Takekura
H.
,
Nishi
M.
,
Noda
T.
,
Iino
M.
(
1995
).
Ca(2+)-induced Ca2+ release in myocytes from dyspedic mice lacking the type-1 ryanodine receptor.
EMBO J
14
,
2999
3006
Takeshima
H.
,
Ikemoto
T.
,
Nishi
M.
,
Nishiyama
N.
,
Shimuta
M.
,
Sugutani
Y.
,
Kuno
J.
,
Saito
I.
,
Saito
H.
,
Endo
M.
, et al. 
(
1996
).
Generation and characterization of mutant mice lacking ryanodine receptor type 3.
J. Biol. Chem
271
,
19649
19652
Wagenknecht
T.
,
Radermacher
M.
(
1995
).
Three-dimensional architecture of the skeletal muscle ryanodine receptor.
FEBS Lett
369
,
43
46
Weisblat
D. A.
,
Byerly
L.
,
Russell
R. L.
(
1976
).
Ionic mechanisms of electrical activity in somatic muscle of the nematode Ascaris lumbricoides.
J. Comp. Physiol
111
,
93
113
Williams
B. D.
,
Waterston
R. H.
(
1994
).
Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations.
J. Cell Biol
124
,
475
490
This content is only available via PDF.