Using double labeling techniques, we studied the replication of corneal epithelial stem cells that reside exclusively in the limbal zone, and their progeny transit amplifying cells. We show that corneal epithelial stem cells can be induced to enter DNA synthesis by wounding and by TPA. We demonstrate the existence of a hierarchy of TA cells; those of peripheral cornea undergo at least two rounds of DNA synthesis before they become post-mitotic, whereas those of central cornea are capable of only one round of division. However, the cell cycle time of these TA cells can be shortened and the number of times these TA cells can replicate is increased in response to wounding. These results thus demonstrate three strategies of epithelial repair: (i) stem cell replication, (ii) the unleashing of additional rounds of cell proliferation that remain as an untapped reserve under normal circumstances, and (iii) enhancement of TA cell proliferation via a shortening of the cycling time.

REFERENCES

Auran
J. D.
,
Koester
C. J.
,
Kleiman
N. J.
,
Rapaport
R.
,
Bomann
J. S.
,
Wirotsko
B. M.
,
Florakis
G. J.
,
Koniarek
J. P.
(
1995
).
Scanning slit confocal microscopic observations of cell morphology and movement within the normal human anterior cornea.
Ophthalmology
102
,
33
41
Barrandon
Y.
,
Green
H.
(
1985
).
Cell size as a determinant of the clone-forming ability of human keratinocytes.
Proc. Nat. Acad. Sci. USA
82
,
5390
5394
Barrandon
Y.
,
Green
H.
(
1987
).
Three clonal types of keratinocyte with different capacities for multiplication.
Proc. Nat. Acad. Sci. USA
84
,
2302
2306
Brockwell
P. J.
,
Trucco
E.
,
Fry
R. J.
(
1972
).
The determination of cell-cycle parameters from measurements of the fraction of labeled mitosis.
Bull. Math. Biophys
34
,
1
12
Buck
R. C.
(
1985
).
Measurement of centripetal migration of normal corneal epithelial cells in the mouse.
Invest. Ophthalmol. Vis. Sci
26
,
1296
1299
Chen
J. J.
,
Tseng
S. C.
(
1990
).
Corneal epithelial wound healing in partial limbal deficiency.
Invest. Ophthalmol. Vis. Sci
31
,
1301
1314
Chen
J. J.
,
Tseng
S. C.
(
1991
).
Abnormal corneal epithelial wound healing in partial-thickness removal of limbal epithelium.
Invest. Ophthalmol. Vis. Sci
32
,
2219
2233
Chwalinski
S.
,
Potten
C. S.
,
Evans
G.
(
1988
).
Double labelling with bromodeoxyuridine and [3H]-thymidine of proliferative cells in small intestinal epithelium in steady state and after irradiation.
Cell Tissue Kinet
21
,
317
329
Cintron
C.
,
Hassinger
L.
,
Kublin
C. L.
,
Friend
J.
(
1979
).
A simple method for the removal of rabbit corneal epithelium utilizing n-heptanol.
Ophthalm. Res
11
,
90
96
Cotsarelis
G.
,
Cheng
S. Z.
,
Dong
G.
,
Sun
T. T.
,
Lavker
R. M.
(
1989
).
Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells.
Cell
57
,
201
209
Cotsarelis
G.
,
Sun
T. T.
,
Lavker
R. M.
(
1990
).
Label-retaining cells reside in the bulge of the pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis.
Cell
61
,
1329
1337
Ebato
B.
,
Friend
J.
,
Thoft
R. A.
(
1987
).
Comparison of central and peripheral human corneal epithelium in tissue culture.
Invest. Ophthalmol. Vis. Sci
28
,
1450
1456
Ebato
B.
,
Friend
J.
,
Thoft
R. A.
(
1988
).
Comparison of limbal and peripheral human corneal epithelium in tissue culture.
Invest. Ophthalmol. Vis. Sci
29
,
1533
1537
Friedenwald
J. S.
(
1951
).
Growth pressure and metaplasia of conjunctival and corneal epithelium.
Doc. Ophthalmol
6
,
184
187
Greenhalgh
D. A.
,
Rothnagel
J. A.
,
Roop
D. R.
(
1994
).
Epidermis: an attractive target tissue for gene therapy.
J. Invest. Dermatol
103
,
63
–.
Hauke
C.
,
Ackermann
I.
,
Korr
H.
(
1995
).
Cell proliferation in the subependymal layer of the adult mouse in vivo and in vitro.
Cell Prolif
28
,
595
607
Hebert
J. M.
,
Rosenquist
T.
,
Goetz
J.
,
Martin
G. R.
(
1994
).
FGF5 as a regulator of the hair growth cycle: evidence from targeted and spontaneous mutations.
Cell
78
,
1017
1025
Huang
A. J. W.
,
Tseng
S. C. G.
(
1991
).
Corneal epithelial wound healing in the absence of limbal epithelium.
Invest. Ophthalmol. Vis. Sci
32
,
96
105
Hyatt
G. A.
,
Beebe
D. C.
(
1992
).
Use of a double-label method to detect rapid changes in the rate of cell proliferation.
J. Histochem. Cytochem
40
,
619
627
Kenyon
K. R.
,
Tseng
S. C.
(
1989
).
Limbal autograft transplantation for ocular surface disorders.
Ophthalmology
96
,
709
722
Kinoshita
S.
,
Friend
J.
,
Kiorpes
T. C.
,
Thoft
R. A.
(
1983
).
Keratin-like proteins in corneal and conjunctival epithelium are different.
Invest. Ophthalmol. Vis. Sci
24
,
577
581
Kinoshita
S.
,
Friend
J.
,
Thoft
R. A.
(
1983
).
Biphasic cell proliferation in transdifferentiation of conjunctival to corneal epithelium in rabbits.
Invest. Ophthalmol. Vis. Sci
24
,
1008
1176
Lajtha
L. G.
(
1979
).
Stem cell concepts.
Differentiation
14
,
23
34
Lavker
R. M.
,
Wei
Z.-G.
,
Sun
T.-T.
(
1998
).
Phorbol ester preferentially stimulates mouse fornical conjunctival and limbal epithelial cells to proliferate in vivo.
Invest. Ophthalmol. Vis. Sci
39
,
101
107
Lavker
R. M.
,
Dong
G.
,
Cheng
S. Z.
,
Kudoh
K.
,
Cotsarelis
G.
,
Sun
T. T.
(
1991
).
Relative proliferative rates of limbal and corneal epithelia. Implications of corneal epithelial migration, circadian rhythm, and suprabasally located DNA-synthesizing keratinocytes.
Invest. Ophthalmol. Vis. Sci
32
,
1864
1875
Lavker
R. M.
,
Sun
T. T.
(
1983
).
Epidermal stem cells.
J. Invest. Dermatol
81
,
121
127
Leblond
C. P.
(
1981
).
The life history of cells in renewing systems.
Am. J. Path
160
,
114
158
Lindberg
K.
,
Brown
M. E.
,
Chaves
H. V.
,
Kenyan
K. R.
,
Rheinwald
J. G.
(
1993
).
In vitro propagation of human ocular surface epithelial cells for transplantation.
Invest. Ophthalmol. Vis. Sci
34
,
2672
2679
Loehrke
H.
,
Schweizer
J.
,
Dederer
E.
,
Hesse
B.
,
Rosenkranz
G.
,
Goerttler
K.
(
1983
).
On the persistence of tumor initiation in two-stage carcinogenesis on mouse skin.
Cell
41
,
771
775
Miller
S. J.
,
Wei
Z. G.
,
Wilson
C.
,
Dzubow
L.
,
Sun
T. T.
,
Lavker
R. M.
(
1993
).
Mouse skin is particularly susceptible to tumor initiation during early anagen of the hair cycle: possible involvement of hair follicle stem cells.
J. Invest. Dermatol
101
,
591
594
Morris
R. J.
,
Fischer
S. M.
,
Slaga
T. J.
(
1985
).
Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations.
J. Invest. Dermatol
84
,
277
281
Morris
R. J.
,
Fischer
S. M.
,
Slaga
T. J.
(
1986
).
Evidence that a slowly cycling subpopulation of adult murine epidermal cells retains carcinogen.
Cancer Res
46
,
3061
3066
Morrison
S. J.
,
Shah
N. M.
,
Anderson
D. J.
(
1997
).
Regulatory mechanisms in stem cell biology.
Cell
88
,
287
298
Pellegrini
G.
,
Traverso
C. E.
,
Franzi
A. T.
,
Zingirian
M.
,
Cancedda
R.
,
De Luca
M.
(
1997
).
Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium.
Lancet
349
,
990
993
Potten
C. S.
(
1974
).
The epidermal proliferative unit: the possible role of the central basal cell.
Cell Tissue Kinet
7
,
77
88
Potten
C. S.
,
Loeffler
M.
(
1987
).
Epidermal cell proliferation. I. Changes with time in the proportion of isolated, paired, and clustered labelled cells in sheets of murine epidermis.
Virchows Arch B
53
,
279
285
Potten
C. S.
,
Loeffler
M.
(
1990
).
Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt.
Development
110
,
1001
1020
Potten
C. S.
,
Morris
R. J.
(
1988
).
Epithelial stem cells in vivo.
J. Cell Sci
10
,
45
62
Potten
C. S.
,
Wichmann
H. E.
,
Loeffler
M.
,
Dobek
K.
,
Major
D.
(
1982
).
Evidence for discrete cell kinetic subpopulations in mouse epidermis based on mathematical analysis.
Cell Tissue Kinet
15
,
305
329
Qin
Y.
,
Willems
G.
(
1993
).
Comparison of the classical autoradiographic and immunohistochemical methods with BrdU for measuring proliferation parameters in colon cancer.
Anticancer Res
13
,
731
736
Reid
L. M.
(
1996
).
Stem cell-fed maturational lineages and gradients in signals:relevance to differentiation of epithelia.
Mol. Biol. Rep
23
,
21
33
Reitan
J. B.
(
1985
).
Some cell kinetic effects of combined injury with ionizing radiation and cyclophosphamide on mouse bladder urothelium.
Virchows Arch. (Cell. Pathol.)
49
,
341
348
Schermer
A.
,
Galvin
S.
,
Sun
T. T.
(
1986
).
Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells.
J. Cell Biol
103
,
49
62
Shapiro
M. S.
,
Friend
J.
,
Thoft
R. A.
(
1981
).
Corneal re-epithelialization from the conjunctiva.
Invest. Ophthalmol. Vis. Sci
21
,
135
142
Stenback
F.
,
Peto
R.
,
Shubik
P.
(
1981
).
Initiation and promotion at different ages and doses in 2200 mice. I. Methods, and the apparent persistence of initiated cells.
Br. J. Cancer
44
,
1
14
Sun
T. T.
,
Cotsarelis
G.
,
Lavker
R. M.
(
1991
).
Hair follicular stem cells: the bulge-activation hypothesis.
J. Invest. Dermatol
98
,
77
–.
Thoft
R.
,
Friend
J.
(
1977
).
Biochemical transformation of regenerating ocular surface epithelium.
Invest. Ophthalmol. Vis. Sci
16
,
14
20
Tsai
R. J.
,
Sun
T. T.
,
Tseng
S. C.
(
1990
).
Comparison of limbal and conjunctival autograft transplantation in corneal surface reconstruction in rabbits.
Ophthalmology
97
,
446
455
Tseng
S. C.
,
Hirst
L. W.
,
Farazdaghi
M.
,
Green
W. R.
(
1984
).
Goblet cell density and vascularization during conjunctival transdifferentiation.
Invest. Ophthalmol. Vis. Sci
25
,
1168
1176
Tseng
S. C.
,
Tsai
R. J.
(
1991
).
Limbal transplantation for ocular surface reconstruction—a review.
Fortschritte der Ophthalmologie
88
,
236
242
Tseng
S. C. G.
(
1996
).
Regulation and clinical implications of corneal epithelial stem cells.
Mol. Biol. Rep
23
,
47
58
van Scott
E. J.
,
Ekel
T. M.
,
Auerbach
R.
(
1963
).
Determinants of rate and kinetics of cell division in scalp hair.
J. Invest. Dermatol
4
,
269
273
Wei
Z. G.
,
Wu
R. L.
,
Lavker
R. M.
,
Sun
T. T.
(
1993
).
In vitro growth and differentiation of rabbit bulbar, fornix, and palpebral conjunctival epithelia. Implications on conjunctival epithelial transdifferentiation and stem cells.
Invest. Ophthalmol. Vis. Sci
34
,
1814
1828
Wei
Z. G.
,
Cotsarelis
G.
,
Sun
T. T.
,
Lavker
R. M.
(
1995
).
Label-retaining cells are preferentially located in fornical epithelium: implications on conjunctival epithelial homeostasis.
Invest. Ophthalmol. Vis. Sci
36
,
236
246
Wilson
C.
,
Cotsarelis
G.
,
Wei
Z. G.
,
Fryer
E.
,
Margolis
F. J.
,
Ostead
M.
,
Tokarek
R.
,
Sun
T. T.
,
Lavker
R. M.
(
1994
).
Cells within the bulge region of mouse hair follicle transiently proliferate during early anagen: heterogeneity and functional differences of various hair cycles.
Differentiation
55
,
127
136
This content is only available via PDF.