N-ethylmaleimide-sensitive factor (NSF) and soluble NSF attachment proteins (SNAPs) have been implicated in diverse vesicular transport events; yet their exact role and site of action remain to be established. Using an established in vitro system, we show that antibodies against alpha-SNAP inhibit vesicle transport from the ER to the cis-Golgi and that recombinant alpha-SNAP enhances/stimulates the process. Cytosol immunodepleted of alpha-SNAP does not support normal transport unless supplemented with recombinant alpha-SNAP but not gamma-SNAP. In marked contrast, cytosol immunodepleted of gamma-SNAP supports ER-Golgi transport to the normal level. Neither antibodies against gamma-SNAP nor recombinant gamma-SNAP have any effect on ER-Golgi transport. These results clearly establish an essential role for alpha-SNAP but not gamma-SNAP in ER-Golgi transport. When the transport assay is performed with cytosol immunodepleted of alpha-SNAP, followed by incubation with cytosol immunodepleted of a COPII subunit, normal transport is achieved. In marked contrast, no transport is detected when the assay is first performed with cytosol depleted of the COPII subunit followed by alpha-SNAP-depleted cytosol, suggesting that alpha-SNAP is required after a step that requires COPII (the budding step). In combination with cytosol immunodepleted of Rab1, it is seen that alpha-SNAP is required after a Rab1-requiring step. It has been shown previously that EGTA blocks ER-Golgi transport at a step after vesicle docking but before fusion and we show here that alpha-SNAP acts before the step that is blocked by EGTA. Our results suggest that alpha-SNAP may be involved in the pre-docking or docking but not the fusion process.

REFERENCES

Aridor
M.
,
Bannykh
S. I.
,
Rowe
T.
,
Balch
W. E.
(
1995
).
Sequential coupling between COPII and COPI vesicle coats in endoplasmic reticulum to Golgi transport.
J. Cell Biol
131
,
875
893
Balch
W. E.
,
McCaffery
J. M.
,
Plunter
H.
,
Farquhar
M. G.
(
1994
).
Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum.
Cell
77
,
841
852
Barlowe
C.
,
Orci
L.
,
Yeung
T.
,
Hosobuchi
M.
,
Hamamoto
S.
,
Salama
N.
,
Rexach
M. F.
,
Ravazzola
M.
,
Amherdt
M.
,
Schekman
R. W.
(
1994
).
COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum.
Cell
77
,
895
907
Beckers
C. J. M.
,
Keller
D. S.
,
Balch
W. E.
(
1987
).
Semi-intact cellspermeable to macromolecules: use in reconstitution of protein transport from the endoplasmic reticulum to the Golgi complex.
Cell
50
,
523
534
Calakos
N.
,
Scheller
R.
(
1994
).
Vesicle-associated membrane protein and synaptophysin are associated on the synaptic vesicle.
J. Biol. Chem
269
,
24534
24537
Clary
D. O.
,
Griff
I. C.
,
Rothman
J. E.
(
1990
).
SNAPs, a family of NSF attachment proteins involved in intracellular membrane fusion in animals and yeast.
Cell
61
,
709
721
Davidson
H. W.
,
Balch
W. E.
(
1993
).
Differential inhibition of multiple vesicular transport steps between the endoplasmic reticulum and trans Golgi network.
J. Biol. Chem
268
,
4216
4226
Eakle
K. A.
,
Bernstein
M.
,
Emr
S. D.
(
1988
).
Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product.
Mol. Cell Biol
8
,
4098
4109
Edelmann
L.
,
Hanson
P. I.
,
Chapman
E. R.
,
Jahn
R.
(
1995
).
Synaptobrevin binding to synaptophysin: a potential mechanism for controlling the exocytotic fusion machine.
EMBO J
14
,
224
231
Ferro-Novick
S.
,
Jahn
R.
(
1994
).
Vesicle fusion from yeast to man.
Nature
370
,
191
193
Graham
T. R.
,
Emr
S. D.
(
1991
).
Compartmental organization of Golgi-specific protein modification and vacuolar protein sorting events defined in a yeast sec18 (NSF) mutant.
J. Cell Biol
114
,
207
218
Griff
I. C.
,
Schekman
R.
,
Rothman
J. E.
,
Kaiser
C. A.
(
1992
).
The yeast SEC17 gene product is functionally equivalent to mammalian-SNAP protein.
J. Biol. Chem
267
,
12106
12115
Ikonen
E.
,
Tagaya
M.
,
Ullrich
O.
,
Montecucco
C.
,
Simons
K.
(
1995
).
Different requirements for NSF, SNAP and Rab proteins in apical and basolateral transport in MDCK cells.
Cell
81
,
571
580
Lian
J. P.
,
Stone
S.
,
Jiang
Y.
,
Lyons
P.
,
Ferro-Novick
S.
(
1994
).
Ypt1p implicated in v-SNARE activation.
Nature
372
,
698
701
Lowe
S. L.
,
Wong
S. H.
,
Hong
W.
(
1996
).
The mammalian ARF-like protein 1 (AR1) is associated with the Golgi complex.
J. Cell Sci
109
,
209
220
Lupashin
V. V.
,
Hamamoto
S.
,
Schekman
R. W.
(
1996
).
Biochemical requirements for the targeting and fusion of ER-derived transport vesicles with purified yeast Golgi membranes.
J. Cell Biol
132
,
277
289
Mayer
A.
,
Wickner
W.
,
Haas
A.
(
1996
).
Sec18p (NSF)-driven release of Sec17p (-SNAP) can precede docking and fusion of yeast vacuoles.
Cell
85
,
83
94
Novick
P.
,
Brennwald
P.
(
1993
).
Friends and family: the role of the Rab GTPases in vesicular traffic.
Cell
75
,
597
601
Nuoffer
C.
,
Balch
W. E.
(
1994
).
GTPases: Multifunctional molecular switches regulating vesicular traffic.
Annu. Rev. Biochem
63
,
949
990
Nuoffer
C.
,
Davidson
H. W.
,
Matteson
J.
,
Meinkoth
J.
,
Balch
W. E.
(
1994
).
A GDP-bound form of Rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments.
J. Cell Biol
125
,
225
237
Peter
F.
,
Nuoffer
C.
,
Pind
S. N.
,
Balch
W. E.
(
1994
).
Guanine nucleotide dissociation inhibitor is essential for Rab1 function in budding from the endoplasmic reticulum and transport through the Golgi stack.
J. Cell Biol
126
,
1393
1406
Peter
F.
,
Plutner
H.
,
Zhu
H.
,
Kreis
T. E.
,
Balch
W. E.
(
1994
).
-COP is essential for transport of protein from the endoplasmic reticulum to the Golgi in vitro.
J. Cell Biol
122
,
1155
1167
Pind
S. N.
,
Nuoffer
C.
,
McCaffery
J. M.
,
Plutner
H.
,
Davidson
H. W.
,
Farquhar
M. G.
,
Balch
W. E.
(
1994
).
Rab1 and Ca2+ are required forthe fusion of carrier vesicles mediating endoplasmic reticulum to Golgi transport.
J. Cell Biol
125
,
239
252
Plutner
H.
,
Cox
A. D.
,
Pind
S.
,
Khosravi-Far
R.
,
Bourne
J. R.
,
Schwaninger
R.
,
Der
C. J.
,
Balch
W. E.
(
1991
).
Rab1b regulates vesicular transport between the endoplasmic reticulum and successive Golgi compartments.
J. Cell Biol
115
,
31
43
Plutner
H.
,
Davidson
H. W.
,
Saraste
J.
,
Balch
W. E.
(
1992
).
Morphological analysis of protein transport from the ER to the Golgi membrane in digitonin-permeabilized cells: role of the p58 containing compartment.
J. Cell Biol
119
,
1097
1116
Pryer
N. K.
,
Wuestehube
L. J.
,
Schekman
R.
(
1992
).
Vesicle-mediated protein sorting.
Annu. Rev. Biochem
61
,
471
516
Rexach
M. F.
,
Schekman
R. W.
(
1991
).
Distinct biochemical requirements for budding, targeting, and fusion of ER-derived transport vesicles.
J. Cell Biol
114
,
219
229
Rothman
J. E.
(
1994
).
Mechanism of intracellular protein transport.
Nature
372
,
55
63
Rothman
J. E.
,
Warren
G.
(
1994
).
Implications of the SNARE hypothesis for intracellular membrane topology and dynamics.
Curr. Biol
4
,
220
233
Rothman
J. E.
,
Wieland
F. T.
(
1996
).
Protein sorting by transport vesicles.
Science
272
,
227
234
Salama
N. R.
,
Yeung
T.
,
Schekman
R. W.
(
1993
).
The Sec13p complex and reconstitution of vesicle budding from the ER with purified cytosolic proteins.
EMBO J
12
,
4073
4082
Scales
S. J.
,
Pepperkok
R.
,
Kreis
T. E.
(
1997
).
Visualization of ER-to-Golgi transport in living cells reveals a sequential mode of action for COPII and COPI.
Cell
90
,
1137
1148
Scheller
R. H.
(
1995
).
Membrane trafficking in the presynaptic nerve terminal.
Neuron
14
,
893
897
Schekman
R.
,
Orci
L.
(
1996
).
Coat proteins and vesicle budding.
Science
271
,
1526
1532
Schwaninger
R.
,
Beckers
C. J. M.
,
Balch
W. E.
(
1991
).
Sequential transport of protein between the endoplasmic reticulum and succesive Golgi compartments in semi-intact cells.
J. Biol. Chem
266
,
13055
13063
Shaywitz
D. A.
,
Orci
L.
,
Ravazzola
M.
,
Swaroop
A.
,
Kaiser
C. A.
(
1995
).
Human SEC13Rp functions in yeast and is localized on transport vesicles budding from the endoplasmic reticulum.
J. Cell Biol
128
,
769
777
Simons
K.
,
Zerial
M.
(
1993
).
Rab proteins and the road maps for intracellular transport.
Neuron
11
,
789
799
Sögaard
M.
,
Tani
K.
,
Ye
R. B.
,
Geromanos
S.
,
Tempst
P.
,
Kirchhausen
T.
,
Rothman
J. E.
,
Söllner
T.
(
1994
).
A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles.
Cell
78
,
937
948
Söllner
T.
,
Whiteheart
S. W.
,
Brunner
M.
,
Erdjument-Bromage
H.
,
Geromanos
S.
,
Tempst
P.
,
Rothman
J. E.
(
1993
).
SNAP receptors implicated in vesicle targeting and fusion.
Nature
362
,
318
324
Steel
G. J.
,
Tagaya
M.
,
Woodman
P. G.
(
1996
).
Association of the fusion protein NSF with clathrin-coated vesicle membrane.
EMBO J
15
,
745
752
Subramaniam
V. N.
,
Peter
F.
,
Philip
R.
,
Wong
S. H.
,
Hong
W.
(
1996
).
GS28, a 28-kilodalton Golgi SNARE that participates in ER-Golgi transport.
Science
272
,
1161
1163
Sudhof
T. C.
(
1995
).
The synaptic vesicle cycle: a cascade of protein-protein interactions.
Nature
375
,
645
653
Tang
B. L.
,
Peter
F.
,
Krijnse-Locker
J.
,
Low
S. H.
,
Griffiths
G.
,
Hong
W.
(
1997
).
The mammalian homolog of yeast Sec13p is enriched in the intermediate compartment and is essential for protein transport from the endoplasmic reticulum to the Golgi apparatus.
Mol. Cell. Biol
17
,
256
266
Weber
T.
,
Zemelman
B. V.
,
McNew
J. A.
,
Westermann
B.
,
Gmachl
M.
,
Parlati
F.
,
Söllner
T. H.
,
Rothman
J. E.
(
1998
).
SNAREpins: minimal machinery for membrane fusion.
Cell
92
,
759
772
Whiteheart
S. W.
,
Griff
I. C.
,
Brunner
M.
,
Clary
D. O.
,
Mayer
T.
,
Buhrow
S. A.
,
Rothman
J. E.
(
1993
).
SNAP family of NSF attachment proteins includes a brain-specific isoform.
Nature
362
,
353
355
Wilson
D. W.
,
Wilcox
C. A.
,
Flynn
G. C.
,
Chen
E.
,
Kuang
W. J.
,
Henzel
W. J.
,
Block
M. R.
,
Ullrich
A.
,
Rothman
J. E.
(
1989
).
A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast.
Nature
339
,
355
359
This content is only available via PDF.