We used affinity-purified polyclonal antibodies to characterize the distribution and function of XMAP230, a heat-stable microtubule-associated protein isolated from Xenopus eggs, during oogenesis. Immunoblots revealed that XMAP230 was present throughout oogenesis and early development, but was most abundant in late stage oocytes, eggs, and early embryos. Immunofluorescence microscopy revealed that XMAP230 was associated with microtubules in oogonia, post-mitotic stage 0 oocytes, early stage I oocytes, and during stage IV-VI of oogenesis. However, staining of microtubules by anti-XMAP230 was not detectable during late stage I through stage III. In stage VI oocytes, anti-XMAP230 stained a large subset of microtubules that were also stained with monoclonal antibodies specific for acetylated (α)-tubulin. During oocyte maturation, XMAP230 was associated with the transient microtubule array that serves as the precursor of the first meiotic spindle, as well as both first and second meiotic spindles. The extensive array of cytoplasmic microtubules present throughout maturation was not detectably stained by anti-XMAP230. Microinjection of anti-XMAP230 locally disrupted the organization and acetylation of microtubules in stage VI oocytes, and reduced the re-acetylation of microtubules during recovery from cold-induced microtubule disassembly. Subsequent maturation of oocytes injected with anti-XMAP230 resulted in defects in the assembly of the transient microtubules array and first meiotic spindle. These observations suggest that XMAP230 is required for the stabilization and organization of cytoplasmic and spindle microtubules in Xenopus oocytes and eggs.

REFERENCES

Andersen
S. S. L.
,
Buendia
B.
,
Dominguez
J. E.
,
Sawyer
A.
,
Karsenti
E.
(
1994
).
Effect on microtubule dynamics of XMAP230, a microtubule-associated protein present in Xenopuslaevis eggs and dividing cells.
J. Cell Biol
127
,
1289
1299
Andersen
S. S. L.
,
Karsenti
E.
(
1997
).
XMAP310: A Xenopus rescue-promoting factor localized to the mitotic spindle.
J. Cell Biol
17
,
975
983
Baas
P. W.
,
Black
M. M.
(
1990
).
Individual microtubules in the axon consist of domains that differ in both composition and stability.
J. Cell Biol
111
,
495
509
Bulinski
J. C.
,
Gundersen
G. G.
(
1991
).
Stabilization of post-translational modification of microtubules during cellular morphogenesis.
BioEssays
13
,
285
293
Cha
B.-J.
,
Error
B.
,
Gard
D. L.
(
1994
).
The spatial and temporal distribution of a 250KD microtubule-associated protein (MAP250) in Xenopus oocytes and embryos.
Mol. Biol. Cell
5
,
169
–.
Chu
D. T. W.
,
Klymkowsky
M. W.
(
1989
).
The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus.
Dev. Biol
136
,
104
117
Desai
A.
,
Mitchison
T. J.
(
1997
).
Microtubule polymerization dynamics.
Annu. Rev. Cell Dev. Biol
13
,
83
117
Dumont
J.
(
1972
).
Oogenesis in Xenopus laevis (Daudin) I. Stages of oocyte development in laboratory maintained animals.
J. Morphol
136
,
153
180
Elinson
R. P.
(
1985
).
Changes in levels of polymeric tubulin associated with activation and dorso-ventral polarization of the frog egg.
Dev. Biol
109
,
224
233
Faruki
S.
,
Karsenti
E.
(
1994
).
Purification of microtubule proteins from Xenopus egg extracts: Identification of a 230K MAP4-like protein.
Cell Motil. Cytoskel
28
,
108
118
Gard
D. L.
(
1991
).
Organization, nucleation, and acetylation of microtubules in Xenopuslaevis oocytes: A study by confocal immunofluorescence microscopy.
Dev. Biol
143
,
346
362
Gard
D. L.
(
1992
).
Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindles.
Dev. Biol
151
,
516
530
Gard
D. L.
(
1993
).
Confocal immunofluorescence microscopy of microtubules in amphibian oocytes and eggs.
Meth. Cell Biol
38
,
241
264
Gard
D. L.
(
1993
).
Ectopic spindle assembly during maturation of Xenopus oocytes: evidence for functional polarization of the oocyte cortex.
Dev. Biol
159
,
298
310
Gard
D. L.
(
1995
).
Axis formation during amphibian oogenesis: reevaluating the role of the cytoskeleton.
Curr. Top. Dev. Biol
30
,
215
252
Gard
D. L.
,
Affleck
D.
,
Error
B. M.
(
1995
).
Microtubule organization, acetylation, and nucleation in Xenopuslaevis oocytes: II. A developmental transition in microtubule organization during early diplotene.
Dev. Biol
168
,
189
201
Gard
D. L.
,
Cha
B.-J.
,
Schroeder
M. M.
(
1995
).
Confocal immunofluorescence microscopy of microtubules, microtubule-associated proteins, and microtubule-organizing centers during amphibian oogenesis and early development.
Curr. Top. Dev. Biol
31
,
383
431
Gard
D. L.
,
Cha
B.-J.
,
King
E.
(
1997
).
The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
Dev. Biol
184
,
95
114
Gard
D. L.
,
Kirschner
M. W.
(
1987
).
A microtubule-associated protein from Xenopus eggs that specifically promotes assembly at the plus-end.
J. Cell Biol
105
,
2203
2215
Hirokawa
N.
(
1994
).
Microtubule organization and dynamics dependent on microtubule-associated proteins.
Curr. Opin. Cell Biol
6
,
74
81
Huchon
D.
,
Crozet
N.
,
Cantenot
N.
,
Ozon
R.
(
1981
).
Germinal vesicle breakdown in the Xenopuslaevis oocyte: Description of a transient microtubule structure.
Reprod. Nutr. Dev
21
,
135
148
Jessus
C.
,
Huchon
D.
,
Ozon
R.
(
1986
).
Distribution of microtubules during the breakdown of the nuclear envelope of the Xenopus oocyte: an immunocytochemical study.
Biol. Cell
56
,
113
120
MacRae
T. H.
(
1992
).
Microtubule organization by cross-linking and bundling proteins.
Biochim. Biophys. Acta
1160
,
145
155
MacRae
T. H.
(
1997
).
Tubulin post-translational modifications—enzymes and their mechanisms of action.
Eur. J. Biochem
244
,
265
278
Mandelkow
E.
,
Mandelkow
E. M.
(
1995
).
Microtubules and microtubule-associated proteins.
Curr. Opin. Cell Biol
7
,
72
81
McNally
F. J.
(
1996
).
Modulation of microtubule dynamics during the cell cycle.
Curr. Opin. Cell Biol
8
,
23
29
Olmsted
J. B.
(
1986
).
Microtubule-associated proteins.
Annu. Rev. Cell Biol
2
,
421
457
Piperno
G.
,
LeDizet
M.
,
Chang
X.
(
1987
).
Microtubules containing acetylated alpha-tubulin in mammalian cells in culture.
J. Cell Biol
104
,
298
302
Schulze
E.
,
Asai
D. J.
,
Bulinski
J. C.
,
Kirschner
M. W.
(
1987
).
Posttranslational modification and microtubule stability.
J. Cell Biol
105
,
2167
2177
Shiina
N.
,
Moriguchi
T.
,
Ohta
K.
,
Gotoh
Y.
,
Nishida
E.
(
1992
).
Regulation of a major microtubule-associated protein by MPF and MAP kinase.
EMBO J
11
,
3977
3984
Takemura
R.
,
Okabe
S.
,
Umeyama
T.
,
Kanai
Y.
,
Cowan
N. J.
,
Hirokawa
N.
(
1992
).
Increased microtubule stability and alpha tubulin acetylation in cells transfected with microtubule-associated proteins MAP1B, MAP2 or tau.
J. Cell Sci
103
,
953
964
Tang
W. J. Y.
(
1993
).
Blot-affinity purification of antibodies.
Meth. Cell Biol
37
,
95
104
Vasquez
R. J.
,
Gard
D. L.
,
Cassimeris
L.
(
1994
).
XMAP from Xenopus eggs promotes rapid plus end assembly of microtubules and rapid microtubule polymer turnover.
J. Cell Biol
127
,
985
993
Wang
X. M.
,
Peloquin
J. G.
,
Zhai
Y.
,
Bulinski
J. C.
,
Borisy
G. G.
(
1996
).
Removal of MAP4 from microtubules in vivo produces no observable phenotype at the cellular level.
J. Cell Biol
132
,
345
357
Webster
D. R.
,
Borisy
G. G.
(
1989
).
Microtubules are acetylated in domains that turn over slowly.
J. Cell Sci
92
,
57
65
Wiche
G.
,
Oberkanins
C.
,
Himmler
A.
(
1991
).
Molecular structure and function of microtubule-associated proteins.
Int. Rev. Cytol
124
,
217
218
Yisraeli
J. K.
,
Sokol
S.
,
Melton
D. A.
(
1990
).
A two-step model for the localization of maternal mRNA in Xenopus oocytes: Involvement of microtubules and microfilaments in the translocation and anchoring of Vg1 mRNA.
Development
108
,
289
298
This content is only available via PDF.