The SDS-fracture immunolabeling technique, unlike conventional freeze-fracture, provides direct evidence for the biochemical nature of membrane constituents. SDS-fracture immunolabeling shows that during differentiation of lens fiber cells the onset of junctional assembly is characterized by the presence of small clusters and linear arrays comprising connexins alpha3 and alpha8. At this initial stage MP26, a major fiber membrane constituent, appears to be colocalized with these two connexins. The application of double-immunogold labeling reveals that when large junctional plaques are assembled MP26 becomes mainly associated with the periphery of the junctional domains. This type of distribution suggests that MP26 may play a role in the clustering and gathering of connexons. In aged nuclear fiber membranes connexins, MP26 and their proteolytic derivatives form an orthogonal lattice of repeating subunits.

REFERENCES

Bruzzone
R.
,
White
T. W.
,
Goodenough
D. A.
(
1996
).
The cellular internet: on-line with connexins.
BioEssays
18
,
709
718
Cheng
A.
,
van Hoeck
A. N.
,
Yeager
M.
,
Verkman
A. S.
,
Mitra
A. K.
(
1997
).
Three-dimensional organization of a human water channel.
Nature
387
,
627
630
Chou
P. Y.
,
Fasman
G. D.
(
1978
).
Prediction of the secondary structure of proteins from their amino acid sequence.
Adv. Enzymol. Relat. Areas Mol. Biol
47
,
45
148
Donaldson
P.
,
Kistler
J.
(
1992
).
Reconstitution of channels from preparations enriched in lens gap junction protein MP70.
J. Membr. Biol
129
,
155
165
Dunia
I.
,
Manenti
S.
,
Rousselet
A.
,
Benedetti
E. L.
(
1987
).
Electron microscopic observations of reconstituted proteoliposomes with the purified major intrinsic membrane protein of eye lens fibers.
J. Cell Biol
105
,
1679
1689
Dunia
I.
,
Smit
J. J. M.
,
van der Valk
M. A.
,
Bloemendal
H.
,
Borst
P.
,
Benedetti
E. L.
(
1996
).
Human multidrug resistance. 3-P-Glycoprotein expression in transgenic mice induces lens membrane alterations leading to cataract.
J. Cell Biol
132
,
701
716
Evans
C. W.
,
Eastwood
S.
,
Rains
J. W.
,
Gruijters
T. M.
,
Bullivant
S.
,
Kistler
J.
(
1992
).
Gap junction formation during development of the mouse.
Eur. J. Cell Biol
60
,
243
249
Farinas
J.
,
van Hoeck
A. N.
,
Shi
L. B.
,
Erickson
C.
,
Verkman
A. S.
(
1993
).
Nonpolar environment of tryptophans in erythrocyte water channel CHIP28 determined by fluorescence quenching.
Biochemistry
32
,
11857
11864
Fujimoto
K.
(
1997
).
SDS-digested freeze-fracture replica labeling electron microscopy to study the two-dimensional distribution of integral membrane proteins and phospholipids in biomembranes: practical procedure, interpretation and application.
Histochem. Cell Biol
107
,
87
96
Fujimoto
K.
,
Nagafuchi
A.
,
Tsukita
S.
,
Kuraoka
A.
,
Ohokuma
A.
,
Shibata
Y.
(
1997
).
Dynamics of connexins, E-cadherin and-catenin on cell membrane during junction formation.
J. Cell Sci
110
,
311
322
Garnier
J.
,
Osguthorpe
D.
,
Robson
B.
(
1978
).
Analysis of the accuracy and implication of simple methods for predicting the secondary structure of globular proteins.
J. Mol. Biol
120
,
97
106
Ghroshroy
R.
,
Goodenough
D. A.
,
Sosisnky
E.
(
1995
).
Preparation, characterization, and structure of half gap junctional layers split with urea and EGTA.
J. Membr. Biol
146
,
15
28
Goodenough
D. A.
(
1992
).
The crystalline lens. A system networked by gap junctional intercellular communication.
Sem. Cell Biol
3
,
49
58
Gong
X. H.
,
Li
E.
,
Klier
G.
,
Quingling
H.
,
Ying
W.
,
Hong
L.
,
Kumar
N.
,
Horwitz
J.
,
Gilula
N. B.
(
1997
).
Disruption of3 Connexin gene leads to proteolysis and cataractogenesis in mice.
Cell
91
,
833
843
Gorin
M. B.
,
Yancey
S. B.
,
Cline
J.
,
Revel
J. P.
,
Horwitz
P.
(
1984
).
The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning.
Cell
39
,
49
59
Gruijters
W. T. M.
(
1989
).
A non-connexon protein (MIP) is involved in eye lens gap-junction formation.
J. Cell Sci
93
,
509
513
Hertzberg
E. L.
,
Anderson
D. J.
,
Friedlander
M.
,
Gilula
N. B.
(
1982
).
Comparative analysis of the major polypeptide from liver gap junctions and lens fiber junctions.
J. Cell Biol
92
,
53
59
Hirase
T.
,
Staddon
J. M.
,
Saitou
M.
,
Ando-Akatsuka
Y.
,
Itoh
M.
,
Furuse
M.
,
Fujimoto
K.
,
Tsukita
S.
,
Rubin
L. L.
(
1997
).
Occludin as a possible determinant of tight junction permeability in endothelial cells.
J. Cell Sci
110
,
1603
1613
Hirokawa
N.
,
Heuser
J.
(
1982
).
The inside and outside of gap-junction membranes visualized by deep etching.
Cell
30
,
395
406
Hulser
D. F.
,
Rehkopf
B.
,
Traub
O.
(
1997
).
Dispersed and aggregated gap junction channels identified by immunogold labeling of freeze-fractured membranes.
Exp. Cell Res
233
,
240
251
Jarvis
L. J.
,
Kumar
N.
,
Louis
C. F.
(
1993
).
The developmental expression of three mammalian lens fiber cell membrane proteins.
Invest. Ophthal. Vis. Sci
34
,
613
621
Jarvis
L.
,
Louis
C. F.
(
1995
).
Purification and oligomeric state of the major lens fiber cell membrane proteins.
Curr. Eye Res
14
,
799
808
Jiang
J. X.
,
Goodenough
D. A.
(
1996
).
Heteromeric connexons in lens gap junction channels.
Proc. Nat. Acad. Sci. USA
93
,
1287
1291
Kistler
J.
,
Berriman
J.
,
Evans
C. W.
,
Gruijters
W. T.
,
Christie
D.
,
Conin
A.
,
Bullivant
S.
(
1990
).
Molecular of lens gap junction protein MP70.
J. Struct. Biol
103
,
204
211
Kistler
J.
,
Christie
D.
,
Bullivant
S.
(
1988
).
Homologies between gap junction proteins in lens, heart and liver.
Nature
331
,
721
723
Kistler
J.
,
Goldie
K.
,
Donaldson
P.
,
Engel
A.
(
1994
).
Reconstitution of native-type noncrystalline lens fiber gap junctions from isolated hemichannels.
J. Cell Biol
126
,
1047
1058
Konig
N.
,
Zampighi
G. A.
(
1995
).
Purification of bovine lens cell-to-cell channels composed of connexin 44 and connexin 50.
J. Cell Sci
108
,
3091
3098
Kumar
N. M.
,
Gilula
N. B.
(
1996
).
The gap junction communication channel.
Cell
84
,
381
388
Kuszak
J. R.
(
1995
).
The ultrastructure of epithelial and fiber cells in the crystalline lens.
Int. Rev. Cytol
163
,
306
350
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Lin
J. S.
,
Fitzgerald
S.
,
Dong
Y.
,
Knight
C.
,
Donaldson
P.
,
Kistler
J.
(
1997
).
Processing of gap junction protein connexin 50 in the ocular lens is accomplished by calpain.
Eur. J. Cell Biol
73
,
141
149
Michea
L.
,
De La Fuente
M. F. L.
,
Lagos
N.
(
1994
).
Lens major intrinsic protein (MIP) promotes cell adhesion when reconstituted into large unilamellar liposomes.
Biochemistry
33
,
7663
7669
Miller
T. M.
,
Goodenough
D. A.
(
1985
).
Gap junctions structures after experimental alteration of junctional channel conductance.
J. Cell Biol
101
,
1741
1748
Miller
T. M.
,
Goodenough
D. A.
(
1986
).
Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cells.
J. Cell Biol
102
,
194
199
Mitra
A. K.
,
van Hoek
A. N.
,
Wiener
M. C.
,
Verkman
A. S.
,
Yaeger
M.
(
1995
).
The CHIP28 water channel visualized in ice by electron crystallography.
Nature Struct. Biol
2
,
726
729
Mulders
S. M.
,
Preston
G. M.
,
Deen
P. M. T.
,
Guggino
W. B.
,
van Os
C. H.
,
Agre
P.
(
1995
).
Water channel properties of major intrinsic protein of lens.
J. Biol. Chem
270
,
1
7
Musil
L. S.
,
Goodenough
D. A.
(
1991
).
Biochemical analysis of Connexin 43 intracellular transport, phosphorylation and assembly into gap junctional plaques.
J. Cell Biol
115
,
1357
1374
Paul
D. L.
,
Ebihara
L.
,
Takemoto
L. J.
,
Swenson
K. I.
,
Goodenough
D. A.
(
1991
).
Cx46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membranes of Xenopus oocytes.
J. Cell Biol
115
,
1077
1089
Preston
G. M.
,
Agree
P.
(
1991
).
Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family.
Proc. Nat. Acad. Sci. USA
88
,
11110
11114
Qian
N.
,
Sejnowski
T.
(
1988
).
Predicting the secondary structure of globular proteins using neural network models.
J. Mol. Biol
202
,
865
875
Tenbroek
L.
,
Anderson
M.
,
Jarvis
L.
,
Louis
C.
(
1992
).
The distribution of the fiber cell intrinsic membrane proteins MP20 and connexin 46 in the bovine lens.
J. Cell Sci
103
,
245
257
Staehelin
L. A.
(
1974
).
Structure and function of intercellular junctions.
Int. Rev. Cytol
39
,
191
284
van Hoeck
A. N.
,
Wiener
M.
,
Bicknese
S.
,
Miercke
L.
,
Biwersi
J.
,
Verkman
A. S.
(
1993
).
Secondary structure analysis of purified functional CHIP28 water channels by CD and FTIR spectroscopy.
Biochemistry
32
,
11847
11856
White
T. W.
,
Bruzzone
R.
,
Goodenough
D. A.
,
Paul
D.
(
1992
).
Mouse Cx50 a potential member of the connexin family of gap junction proteins is the lens fiber protein MP70.
Mol. Biol. Cell
3
,
711
720
Wride
M.
(
1996
).
Cellular and molecular features of lens differentiation: a review of recent advances.
Differentiation
61
,
77
93
Zampighi
G. A.
,
Simon
S. A.
,
Hall
J. E.
(
1992
).
The specialized junctions of the lens.
Int. Rev. Cytol
136
,
185
225
This content is only available via PDF.