Mechanisms to acquire tolerance against heat, an important environmental stress condition, have evolved in all organisms, but are largely unknown. When Saccharomyces cerevisiae cells are pre-conditioned at 37 degrees C, they survive an otherwise lethal exposure to 48–50 degrees C, and form colonies at 24 degrees C. We show here that incubation of yeast cells at 48–50 degrees C, after pre-conditioning at 37 degrees C, resulted in inactivation of exocytosis, and in conformational damage and loss of transport competence of proteins residing in the endoplasmic reticulum (ER). Soon after return of the cells to 24 degrees C, membrane traffic was resumed, but cell wall invertase, vacuolar carboxypeptidase Y and a secretory beta-lactamase fusion protein remained in the ER for different times. Thereafter their transport competence was resumed very slowly with widely varying kinetics. While the proteins were undergoing conformational repair in the ER, their native counterparts, synthesized after shift of the cells to 24 degrees C, folded normally, by-passed the heat-affected copies and exited rapidly the ER. The Hsp70 homolog Lhs1p was required for acquisition of secretion competence of heat-damaged proteins. ER retention and refolding of heat-denatured glycoproteins appear to be part of the cellular stress response.

REFERENCES

Baxter
B. K.
,
James
P.
,
Evans
T.
,
Craig
E. A.
(
1996
).
SSI1 encodes a novel Hsp70 of the Saccharomyces cerevisiae endoplasmic reticulum.
Mol. Cell. Biol
16
,
6444
6456
Blond-Elguindi
S.
,
Cwirla
S. E.
,
Dower
W. J.
,
Lipshutz
R. J.
,
Sprang
S. R.
,
Sambrook
J. F.
,
Gething
M.-J. H.
(
1993
).
Affinity panning ofa library peptides displayed on bacteriophages reveals the binding specifity of Bip.
Cell
75
,
717
728
Bonifacino
J. S.
,
Lippincott-Schwartz
J.
(
1991
).
Degradation of proteins within the endoplasmic reticulum.
Curr. Opin. Cell Biol
3
,
592
600
Braakman
I.
,
Hoover-Litty
H.
,
Wagner
K. R.
,
Helenius
A.
(
1991
).
Folding of influenza hemagglutinin in the endoplasmic reticulum.
J. Cell Biol
114
,
401
411
Craven
R. A.
,
Egerton
M.
,
Stirling
C. J.
(
1996
).
A novel Hsp70 of the yeast ER lumen is required for the efficient translocation of a number of protein precursors.
EMBO J
15
,
2640
2650
Dorner
A. J.
,
Wasley
L. C.
,
Kaufman
R. J.
(
1992
).
Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells.
EMBO J
11
,
1563
1571
Flynn
G.C.
,
Pohl
J.
,
Flocco
M. T.
,
Rothman
J. E.
(
1991
).
Peptide-binding specificity of the molecular chaperone BiP.
Nature
353
,
726
730
Gaitanaris
G. A.
,
Papavassiliou
A. G.
,
Rubock
P.
,
Silverstein
S. J.
,
Gottesman
M. E.
(
1990
).
Renaturation of denatured Lambda repressor requires heat shock proteins.
Cell
61
,
1013
1020
Georgopoulos
C.
,
Welch
W. J.
(
1993
).
Role of the major heat shock proteins as molecular chaperones.
Annu. Rev. Cell Biol
9
,
601
6034
Gething
M. J.
,
Sambrook
J. F.
(
1992
).
Protein folding in the cell.
Nature
355
,
33
45
Hamilton
G.
,
Flynn
G. C.
(
1996
).
Cer1p, a novel Hsp70-related protein required for posttranslational endoplasmic reticulum translocation in yeast.
J. Biol. Chem
271
,
30610
30613
Hammond
C.
,
Braakman
I.
,
Helenius
A.
(
1994
).
Role of N-linked oligosaccharide recognition, glucose trimming and calnexin in glycoprotein folding and quality control.
Proc. Nat. Acad. Sci. USA
91
,
913
917
Hammond
C.
,
Helenius
A.
(
1994
).
Folding of VSV G protein: sequential interaction with Bip and calnexin.
Science
266
,
456
458
Hendershot
L.
,
Wei
J.
,
Gaut
J.
,
Melnick
J.
,
Aviel
S.
,
Argon
Y.
(
1996
).
Inhibition of immunoglobulin folding and secretion by dominant negative BiP ATPase mutants.
Proc. Nat. Acad. Sci. USA
93
,
5269
5274
Hurtley
S. M.
,
Helenius
A.
(
1989
).
Protein oligomerization in the endoplasmic reticulum.
Annu. Rev. Cell. Biol
5
,
277
307
Jämsä
E.
,
Simonen
M.
,
Makarow
M.
(
1994
).
Selective retention of secretory protein in the yeast endoplasmic reticulum by treatment of cells with a reducing agent.
Yeast
10
,
355
370
Jämsä
E.
,
Holkeri
H.
,
Vihinen
H.
,
Wikström
M.
,
Simonen
M.
,
Walse
B.
,
Kalkkinen
N.
,
Paakkola
J.
,
Makarow
M.
(
1995
).
Structural features of a polypeptide carrier promoting secretion of a-lactamase fusion protein in yeast.
Yeast
11
,
1381
1391
Jämsä
E.
,
Vakula
N.
,
Arffman
A.
,
Kilpeläinen
I.
,
Makarow
M.
(
1995
).
In vivo reactivation of heat-denatured protein in the endoplasmic reticulum of yeast.
EMBO J
14
,
6028
6033
Kaiser
C.
,
Schekman
R.
(
1990
).
Distinct sets of SEC genes govern transport vesicle formation and fusion early in the secretory pathway.
Cell
61
,
723
733
Klausner
R. D.
,
Sitia
R.
(
1990
).
Protein degradation in the endoplasmic reticulum.
Cell
62
,
611
614
Knittler
M. R.
,
Haas
I. G.
(
1992
).
Interaction of BiP with newly synthesized immunoglobulin light chain molecules: cycles of sequential binding and release.
EMBO J
11
,
1573
1581
Knittler
M. R.
,
Dirks
S.
,
Haas
I. G.
(
1995
).
Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum.
Proc. Nat. Acad. Sci. USA
92
,
1764
1768
Lindquist
S.
,
Craig
E.
(
1988
).
The heat-shock proteins.
Annu. Rev. Genet
22
,
631
677
Lodish
H. F.
,
Kong
N.
,
Snider
M.
,
Strous
G. J. A. M.
(
1983
).
Hepatoma secretory proteins migrate from the rough endoplasmic reticulum to Golgi at characteristic rates.
Nature
304
,
80
83
Oliver
S.
(
1996
).
From DNA sequence to biological function.
Nature
378
,
597
600
Ou
W.-J.
,
Cameron
P. H.
,
Thomas
D. Y.
,
Bergeron
J. J. M.
(
1993
).
Association of folding intermediates of glycoproteins with calnexin during protein maturation.
Nature
264
,
771
776
Parsell
D. A.
,
Kowal
A. S.
,
Singer
M. A.
,
Lindquist
S.
(
1994
).
Protein disaggregation mediated by heat-shock protein Hsp104.
Nature
372
,
475
478
Pittman
D. D.
,
Tomkinson
K. N.
,
Kaufman
R. J.
(
1994
).
Post-translational requirements for functional factor V and factor VIII secretion in mammalian cells.
J. Biol. Chem
269
,
17329
17337
Plemper
R. K.
,
Böhmler
S.
,
Bordallo
J.
,
Sommer
T.
,
Wolf
D. H.
(
1997
).
Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation.
Nature
388
,
891
895
Rasmussen
S. W.
(
1994
).
Sequence of a 20.7 kb region of yeast chromosome XI includes the NUP100 gene, an open reading frame (ORF) possibly representing a nucleoside diphosphate kinase gene, tRNA for His, Val and Trp in addition to seven ORFs with weak or no significant similarity to known proteins.
Yeast
10
,
69
–.
Reddy
P.
,
Sparvoli
A.
,
Fagioli
C.
,
Fassina
G.
,
Sitia
R.
(
1996
).
Formation of reversible disulfide bonds with the protein matrix of endoplasmic reticulum correlates with the retention of unassembled Ig light chains.
EMBO J
15
,
2077
2085
Russo
P.
,
Kalkkinen
N.
,
Sareneva
H.
,
Paakkola
J.
,
Makarow
M.
(
1992
).
A Heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein.
Proc. Nat. Acad. Sci. USA
89
,
3671
3675
Russo
P.
,
Simonen
M.
,
Uimari
A.
,
Teesalu
T.
,
Makarow
M.
(
1993
).
Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein.
Mol. Gen. Genet
239
,
273
280
Sanchez
Y.
,
Lindquist
S.
(
1990
).
Hsp104 is required for induced thermotolerance.
Science
248
,
1112
1115
Saris
N.
,
Holkeri
H.
,
Craven
R. A.
,
Stirling
C. J.
,
Makarow
M.
(
1997
).
The Hsp70 homologue Lhs1p is involved in a novel function of the yeast endoplasmic reticulum, refolding and stabilization of heat-denatured protein aggregates.
J. Cell Biol
137
,
813
824
Schmitt
M.
,
Neupert
W.
,
Langer
T.
(
1996
).
The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria.
J. Cell Biol
134
,
1375
1386
Schröder
H.
,
Langer
T.
,
Hartl
F. U.
,
Bukau
B.
(
1993
).
DnaK, DnaJ and GrpE from a cellular chaperone machinery capable of repairing heat-induced protein damage.
EMBO J
12
,
4137
4144
Simonen
M.
,
Jämsä
E.
,
Makarow
M.
(
1994
).
The role of the carrier protein and disulfide formation in the folding of-lactamase fusion proteins in the endoplasmic reticulum of yeast.
J. Biol. Chem
269
,
13889
13892
Simons
J. F.
,
Ferro-Novick
S.
,
Rose
M. D.
,
Helenius
A.
(
1995
).
BiP/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast.
J. Cell Biol
130
,
41
49
Skowyra
D.
,
Georgopoulos
C.
,
Zylicz
M.
(
1990
).
The E. coli dnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP hydrolysis-dependent manner.
Cell
62
,
939
944
Stevens
T.
,
Esmon
B.
,
Schekman
R.
(
1982
).
Early stages in the yeast secretory pathway are required for transport of carboxypeptidase Y to the vacuole.
Cell
30
,
439
448
Ziemienowicz
A.
,
Skowyra
D.
,
Zeilstra-Ryalls
J.
,
Fayet
O.
,
Georgopoulos
C.
,
Zylicz
M.
(
1993
).
Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase.
J. Biol. Chem
268
,
25425
25431
This content is only available via PDF.