Exit from mitosis in animal cells is substantially delayed when spindle assembly is inhibited, spindle bipolarity is disrupted, or when a monopolar spindle is formed. These observations have led to the proposal that animal cells have a ‘spindle assembly’ checkpoint for the metaphase-anaphase transition that monitors bipolar spindle organization. However, the existence of such a checkpoint is uncertain because perturbations in spindle organization can produce unattached kinetochores, which by themselves are known to delay anaphase onset. In this study we have tested if cells monitor bipolar spindle organization, independent of kinetochore attachment, by analyzing the duration of mitosis in sea urchin zygotes and vertebrate somatic cells containing multipolar spindles in which all kinetochores are attached to spindle poles. We found that sea urchin zygotes containing tripolar or tetrapolar spindles progressed from nuclear envelope breakdown to anaphase onset with normal timing. We also found that the presence of supernumerary, unpaired spindle poles did not greatly prolong mitosis. Observation of untreated PtK1 cells that formed tripolar or tetrapolar spindles revealed that they progressed through mitosis, on average, at the normal rate. More importantly, the interval between the bipolar attachment of the last monooriented chromosome and anaphase onset was normal. Thus, neither of these cell types can detect the presence of gross aberrations in spindle architecture that inevitably lead to aneuploidy. We conclude that animal cells do not have a checkpoint for the metaphase-anaphase transition that monitors defects in spindle architecture independent of the checkpoint that monitors kinetochore attachment to the spindle. For dividing cells in which spindle microtubule assembly is not experimentally compromised, we propose that the completion of kinetochore attachment is the event which limits the time of the metaphase-anaphase transition.

Andreassen
P. R.
,
Margolis
R. L.
(
1994
).
Microtubule dependency of p34cdc2inactivation and mitotic exit in mammalian cells.
J. Cell Biol
127
,
789
802
Bailly
E.
,
Bornens
M.
(
1992
).
Centrosome and cell division.
Nature
355
,
300
301
Bajer
A. S.
(
1982
).
Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis.
J. Cell Biol
93
,
33
48
Bernat
R. L.
,
Borisy
G. G.
,
Rothfield
N. F.
,
Earnshaw
W. C.
(
1990
).
Injection of anticentromere antibodies in interphase disrupts events required for chromosome movement at mitosis.
J. Cell Biol
111
,
1519
1533
Earnshaw
W. C.
,
Bernat
R. L.
,
Cooke
C. A.
,
Rothfield
N. F.
(
1991
).
Role of the centromere/kinetochore in cell cycle control.
Cold Spring Harbor Symp. Quant. Biol
55
,
675
685
Earnshaw
W. C.
,
MacKay
A. M.
(
1994
).
Role of nonhistone proteins in the chromosomal events of mitosis.
FASEB J
8
,
947
956
Fuseler
J. W.
(
1973
).
Repetitive procurement of mature gametes from individual sea stars and sea urchins.
J. Cell Biol
57
,
879
881
Gosh
S.
,
Paweletz
N.
(
1987
).
Centrosome-kinetochore interaction in multinucleate cells.
Chromosoma
95
,
136
143
Hartwell
L. H.
,
Weinert
T. A.
(
1989
).
Checkpoints: Controls that ensure the order of cell cycle events.
Science
246
,
629
634
Heneen
W. K.
(
1970
).
In situ analysis of normal and abnormal patterns of the mitotic apparatus in cultured rat-kangaroo cells.
Chromosoma
29
,
88
117
Heneen
W. K.
(
1975
).
Kinetochores and microtubules in multipolar mitosis and chromosome orientation.
Exp. Cell Res
91
,
57
62
Hoyt
M. A.
,
Toltis
L.
,
Roberts
B. T.
(
1991
).
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.
Cell
66
,
507
517
Hunt
T.
,
Luca
F. C.
,
Ruderman
J. V.
(
1992
).
The requirements for protein synthesis and degradation and the control of destruction of cyclins A and B in the meiotic and mitotic cell cycles of the clam embryo.
J. Cell Biol
116
,
707
724
Jensen
C. G.
,
Davison
E. A.
,
Bowser
S. S.
,
Rieder
C. L.
(
1987
).
Primary cilia cycle in PtK1 cells: Effects of Colcemid and taxol on cilia formation and resorption.
Cell Motil. Cytoskel
7
,
187
197
Jordan
M. A.
,
Toso
R. J.
,
Thrower
D.
,
Wilson
L.
(
1991
).
Mechanism of inhibition of cell proliferation by vinca alkaloids.
Cancer Res
51
,
2212
2222
Jordan
M. A.
,
Toso
R. J.
,
Thrower
D.
,
Wilson
L.
(
1992
).
Effects of vinblastine, podophyllotoxin, and nocodazole on mitotic spindles.
J. Cell Sci
102
,
401
416
Jordan
M. A.
,
Toso
R. J.
,
Thrower
D.
,
Wilson
L.
(
1993
).
Mechanism of mitotic block and inhibition of cell proliferation by taxol at low concentrations.
Proc. Nat. Acad. Sci. USA
90
,
9552
9556
Keryer
G.
,
Ris
H.
,
Borisy
G.
(
1984
).
Centriole distribution during tripolar mitosis in Chinese hamster ovary cells.
J. Cell Biol
98
,
2222
2229
Kubiak
J. Z.
,
Weber
M.
,
De Pennart
H.
,
Winston
N. J.
,
Maro
B.
(
1993
).
The metaphase II arrest in mouse oocytes is controlled through microtubule-dependent destruction of cyclin B in the presence of CSF.
EMBO J
12
,
3773
3778
Kallenbach
R. J.
(
1985
).
Ultrastructural analysis of the initiation and development of cytasters in sea-urchin eggs.
J. Cell Sci
73
,
261
278
Kato
K. H.
,
Sugiyama
M.
(
1971
).
On the de novo formation of the centriole in the activated sea urchin egg.
Dev. Growth Differ
13
,
359
366
Kuriyama
R.
,
Borisy
G. G.
(
1983
).
Cytasters induced within unfertilized sea urchin eggs.
J. Cell Sci
61
,
175
189
Li
R.
,
Murray
A. W.
(
1991
).
Feedback control of mitosis in budding yeast.
Cell
66
,
519
531
Li
X.
,
Nicklas
R. B.
(
1995
).
Mitotic forces control a cell-cycle checkpoint.
Nature
373
,
630
632
McIntosh
J. R.
(
1991
).
Structural and mechanical control of mitotic progression.
Cold Spring Harbor Symp. Quant. Biol
55
,
613
619
Miki-Normura
T.
(
1977
).
Studies on the de novo formation of centrioles: aster formation in the activated eggs of sea urchins.
J. Cell Sci
24
,
203
216
Murray
A. M.
(
1992
).
Creative blocks: Cell-cycle checkpoints and feedback controls.
Nature
359
,
599
604
Murray
A. M.
(
1994
).
Cell-cycle checkpoints.
Curr. Opin. Cell Biol
6
,
872
876
Nicklas
R. B.
(
1989
).
Chance encounters and precision in mitosis.
J. Cell Sci
89
,
283
285
Nicklas
R. B.
,
Ward
S. C.
(
1994
).
Elements of error correction in mitosis: microtubule capture, release, and tension.
J. Cell Biol
126
,
1241
1253
Nicklas
R. B.
,
Ward
S. C.
,
Gorbsky
G. J.
(
1995
).
Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.
J. Cell Biol
130
,
929
939
Pera
F.
,
Rainer
B.
(
1973
).
Studies of multipolar mitosis in euploid tissue cultures.
Chromosoma
42
,
71
86
Rappaport
R.
(
1969
).
Aster-equatorial surface relations and furrow establishment.
J. Exp. Zool
171
,
59
68
Rieder
C. L.
,
Davison
E. A.
,
Jensen
L. C. W.
,
Cassimeris
L.
,
Salmon
E. D.
(
1986
).
Oscillatory movements of monooriented chromosomes, and their position relative to the spindle pole, result from the ejection properties of the aster and half-spindle.
J. Cell Biol
103
,
581
591
Rieder
C. L.
,
Palazzo
R. E.
(
1992
).
Colcemid and the mitotic cycle.
J. Cell Sci
102
,
387
392
Rieder
C. L.
,
Schultz
A.
,
Cole
R.
,
Sluder.
G.
(
1994
).
Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle.
J. Cell Biol
127
,
1301
1310
Rieder
C. L.
,
Cole
R.
,
Khodjakov
A.
,
Sluder
G.
(
1995
).
The checkpoint delaying anaphase in response to chromosome monoorientation in PtK1cells is mediated by an inhibitory signal produced by unattached kinetochores.
J. Cell Biol
130
,
941
948
Ring
D.
,
Hubble
R.
,
Kirschner
M.
(
1982
).
Mitosis in a cell with multiple centrioles.
J. Cell Biol
94
,
549
556
Schatten
H.
,
Schatten
G.
,
Mazia
D.
,
Balczon
R.
,
Simerly
C.
(
1986
).
Behavior of centrosomes during fertilization and cell division in mouse oocytes and in sea urchin eggs.
Proc. Nat. Acad. Sci. USA
83
,
105
109
Sellito
C.
,
Kuriyama
R.
(
1988
).
Distribution of pericentriolar material in multipolar spindles induced by Colcemid treatment in Chinese hamster ovary cells.
J. Cell Sci
89
,
57
65
Sluder
G.
(
1976
).
Experimental manipulation of the amount of tubulin available for assembly into the spindle of dividing sea urchin eggs.
J. Cell Biol
70
,
75
85
Sluder
G.
(
1979
).
Role of spindle microtubules in the control of cell cycle timing.
J. Cell Biol
80
,
674
691
Sluder
G.
,
Begg
D. A.
(
1983
).
Control mechanisms of the cell cycle: Role of the spatial arrangement of spindle components in the timing of mitotic events.
J. Cell Biol
97
,
877
886
Sluder
G.
,
Begg
D. A.
(
1985
).
Experimental analysis of the reproduction of spindle poles.
J. Cell Sci
76
,
35
51
Sluder
G.
,
Miller
F. J.
,
Thompson
E. A.
,
Wolf
D. E.
(
1994
).
Feedback control of the metaphase-anaphase transition in sea urchin zygotes: Role of maloriented chromosomes.
J. Cell Biol
126
,
189
198
Sluder
G.
,
Thompson
E. A.
,
Rieder
C. L.
,
Miller
F. J.
(
1995
).
Nuclear envelope breakdown is under nuclear not cytoplasmic control in sea urchin zygotes.
J. Cell Biol
129
,
1447
1458
Tomkiel
J. C.
,
Cooke
C. A.
,
Saitoh
H.
,
Bernat
R. L.
,
Earnshaw
W. C.
(
1994
).
CENP-C is required for maintaining proper kinetochore size and for a timely transition to anaphase.
J. Cell Biol
125
,
531
545
Wang
R. J.
,
Wissinger
W.
,
King
E. J.
,
Wang
G.
(
1983
).
Studies on cell division in mammalian cells. VII. A temperature-sensitive cell line abnormal in centriole separation and chromosome movement.
J. Cell Biol
96
,
301
306
Zeive
G. W.
,
Turnbull
D.
,
Mullins
J. M.
,
McIntosh
J. R.
(
1980
).
Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole.
Exp. Cell Res
126
,
397
405
This content is only available via PDF.