We have investigated the expression and localization of fibronectin, laminin, and their receptors, and we used an in vitro chick chondrocyte differentiation model to define a time hierarchy for their appearance in early chondro-genesis and to determine their role in the cell condensation process. By serum fibronectin depletion/reconstitution, or GRGDSP peptide competition experiments, we show that fibronectin contributes to the initial cell-cell interactions that occur during condensation. In later stages, a down-regulation of both fibronectin and of its alpha5beta1 integrin receptor occur, as demonstrated by mRNA and protein kinetics. Immunolocalisation studies suggest that the reduction of fibronectin in discrete areas is involved in local activation of the cell differentiation program. Furthermore, we show that laminin is expressed during the in vitro cell condensation process in areas that are negative for fibronectin staining. The types of laminin as well as the timing of expression have been determined by northern blot and RT-PCR analyses. The highest levels of expression are coincident with maximal cell aggregation. The alpha3beta1 laminin receptor, highly expressed in dedifferentiated cells, follows later on the ligand trend. During in vitro chondrogenesis, a down-regulation in the B isoform, and an up-regulation of the A isoform, of the alpha subunit of the alpha6beta1 laminin receptor occurs. Immunolocalisation studies suggest that laminin is involved in the definition of differentiating areas as opposed to non differentiating areas of the condensed region, i.e. the periphery, which eventually gives rise to the perichondrium.

This content is only available via PDF.