Vascular colonisation by Bartonella henselae may cause vaso-proliferative tumour growth with clumps of bacteria found in close association with proliferating endothelial cells. By using B. henselae-infected human umbilical vein endothelial cells as an in vitro model for endothelial colonisation, we report here on a novel mechanism of cellular invasion by bacteria. First, the leading lamella of endothelial cells establishes cellular contact to sedimented bacteria and mediates bacterial aggregation by rearward transport on the cell surface. Subsequently, the formed bacterial aggregate is engulfed and internalised by a unique host cellular structure, the invasome. Completion of this sequence of events requires 24 hours. Cortical F-actin, intercellular adhesion molecule-1 and phosphotyrosine are highly enriched in the membrane protrusions entrapping the bacterial aggregate. Actin stress fibres, which are anchored to the numerous focal adhesion plaques associated with the invasome structure, are typically found to be twisted around its basal part. The formation of invasomes was found to be inhibited by cytochalasin D but virtually unaffected by nocodazole, colchicine or taxol, indicating that invasome-mediated invasion is an actin-dependent and microtubuli-independent process. Bacterial internalisation via the invasome was consistently observed with several clinical isolates of B. henselae, while a spontaneous mutant obtained from one of these isolates was impaired in invasome-mediated invasion. Instead, this mutant showed increased uptake of bacteria into perinuclear localising phagosomes, suggesting that invasome-formation may interfere with this alternative mechanism of bacterial internalisation. Internalisation via the invasome represents a novel paradigm for the invasion of bacteria into host cells which may serve as a cellular colonisation mechanism in vivo, e.g. on proliferating and migrating endothelial cells during Bartonella-induced vaso-proliferative tumour growth.
Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome
C. Dehio, M. Meyer, J. Berger, H. Schwarz, C. Lanz; Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci 15 September 1997; 110 (18): 2141–2154. doi: https://doi.org/10.1242/jcs.110.18.2141
Download citation file:
Advertisement
Cited by
2021 JCS Prize winner announced
-JCSPrize.png?versionId=3749)
We are pleased to announce that the winner of the 2021 JCS Prize is Lee Dolat for his paper entitled ‘An endometrial organoid model of interactions between Chlamydia and epithelial and immune cells’.
Propose a new Workshop
-GSWorkshop.png?versionId=3749)
Our Workshops bring together leading experts and early-career researchers from a range of scientific backgrounds. Applications are now open to propose Workshops for 2024, one of which will be held in a Global South country.
Cell scientist to watch: Christian Münch
-CSTW.png?versionId=3749)
Journal of Cell Science interviewed Christian Münch, who established his independent research group in 2016 at Goethe University Frankfurt. His lab studies cellular stress responses to mitochondrial protein misfolding, infection and disease, as well as developing proteomics methods.
Essay series: Equity, diversity and inclusion in cell biology
-EssaySeries.png?versionId=3749)
The JCS Essay Series is an initiative to help showcase and provide a platform for voices in the field of cell biology. The first topic we covered was 'Equity, diversity and inclusion in cell biology', and the winning and runner up essays are now available to read.
FocalPlane Network launched
-FocalPlaneNetworkLaunch.png?versionId=3749)
We are excited to announce the launch of the FocalPlane Network, an international directory of microscopists. The idea behind the FocalPlane Network is to facilitate promotion and networking as well as assist those seeking conference speakers, committee members, reviewers or collaborators. We hope that it will help promote diversity in the community. Find out more and join the Network here.