Syntaxins are thought to participate in the specific interactions between vesicles and acceptor membranes in intracellular protein trafficking. VAM3 of Saccharomyces cerevisiae encodes a 33 kDa protein (Vam3p) with a hydrophobic transmembrane segment at its C terminus. Vam3p has structural similarities to syntaxins of yeast, animal and plant cells. delta vam3 cells accumulated spherical structures of 200–600 nm in diameter, but lacked normal large vacuolar compartments. Loss of function of Vam3p resulted in inefficient processing of vacuolar proteins proteinase A, proteinase B and carboxypeptidase Y, and defective maturation of alkaline phosphatase. Subcellular fractionation and immunofluorescence microscopy showed that Vam3p was localized to the vacuolar membranes. Vam3p was accumulated in certain regions of the vacuolar membranes. We conclude from these observations that Vam3p is a novel member of syntaxin in the vacuoles and it provides the t-SNARE function in a late step of the vacuolar assembly.

REFERENCES

Aalto
M. K.
,
Ronne
H.
,
Keränen
S.
(
1993
).
Yeast syntaxins Sso1p and Sso2p belong to a family of related membrane proteins that function in vesicular transport.
EMBO J
12
,
4095
4104
Bassham
D. C.
,
Gal
S.
,
da Silva Conceiçao
A.
,
Raikhel
N. V.
(
1995
).
An Arabidopsis syntaxin homologue isolated by functional complementation of a yeast pep12 mutant.
Proc. Nat. Acad. Sci. USA
92
,
7262
7266
Baumert
M.
,
Maycox
P. R.
,
Navone
F.
,
De Camilli
P.
,
Jahn
R.
(
1989
).
Synaptobrevin: an integral membrane protein of 18,000 daltons present in small synaptic vesicles of rat brain.
EMBO J
8
,
379
384
Becherer
K. A.
,
Rieder
S. E.
,
Emr
S. D.
,
Jones
E. J.
(
1996
).
Novel syntaxin homologue, Pep12p, required for the sorting of lumenal hydrolases to the lysosome-like vacuole in yeast.
Mol. Biol. Cell
7
,
579
594
Bennett
M. K.
,
Garcia-Arraras
J. E.
,
Elferink
L. A.
,
Peterson
K.
,
Fleming
A. M.
,
Hazuka
C. D.
,
Scheller
R. H.
(
1993
).
The syntaxin family of vesicular transport receptors.
Cell
74
,
863
873
Cooper
A. A.
,
Stevens
T. H.
(
1996
).
Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases.
J. Cell Biol
133
,
529
541
Dascher
C.
,
Ossig
R.
,
Gallwitz
D.
,
Schmitt
H. D.
(
1991
).
Identification and structure of four yeast genes (SLY) that are able to suppress the functional loss of YPT1, a member of the RAS superfamily.
Mol. Cell. Biol
11
,
872
885
Gerst
J. E.
,
Rodgers
L.
,
Riggs
M.
,
Wigler
M.
(
1992
).
SNC1, a yeast homolog of the synaptic vesicle-associated membrane protein/synaptobrevin gene family: genetic interactions with the RAS and CAP genes.
Proc. Nat. Acad. Sci. USA
89
,
4338
4342
Gietz
R. D.
,
Schiestl
R. H.
(
1991
).
Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier.
Yeast
7
,
253
264
Hardwick
K. G.
,
Pelham
H. R.
(
1992
).
SED5 encodes a 39-kD integral membrane protein required for vesicular transport between the ER and the Golgi complex.
J. Cell Biol
119
,
513
521
Herman
P. K.
,
Stack
J. H.
,
Emr
S. D.
(
1991
).
A genetic and structural analysis of the yeast Vps15 protein kinase: evidence for a direct role of Vps15p in vacuolar protein delivery.
EMBO J
10
,
4049
4060
Horasdovsky
B. F.
,
Emr
S. D.
(
1993
).
The VPS16 gene product associates with a sedimentable protein complex and is essential for vacuolar protein sorting in yeast.
J. Biol. Chem
268
,
4953
4962
Ito
H.
,
Fukuda
Y.
,
Murata
K.
,
Kimura
A.
(
1983
).
Transformation of intact yeast cells treated with alkali cations.
J. Bacteriol
153
,
163
168
Jones
E. W.
,
Zubenko
G. S.
,
Parker
R. R.
(
1982
).
PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae.
Genetics
102
,
665
677
Jones
J. S.
,
Prakash
L.
(
1990
).
Yeast Saccharomyces cerevisiae selectable markers in pUC18 polylinkers.
Yeast
6
,
363
366
Klionsky
D. J.
,
Emr
S. D.
(
1989
).
Membrane protein sorting: biosynthesis, transport and processing of yeast vacuolar alkaline phosphatase.
EMBO J
8
,
2241
2250
Klionsky
D. J.
,
Herman
P.
,
Emr
S. D.
(
1990
).
The fungal vacuole: composition, function and biogenesis.
Microbiol. Rev.
54
,
266
292
Klionsky
D. J.
,
Nelson
H.
,
Nelson
N.
(
1992
).
Compartment acidification is required for efficient sorting of proteins to the vacuole in Saccharomyces cerevisiae.
J. Biol. Chem
267
,
3416
3422
Klionsky
D. J.
,
Nelson
H.
,
Nelson
N.
,
Yaver
D. S.
(
1992
).
Mutations in the yeast vacuolar ATPase result in the mislocalization of vacuolar proteins.
J. Exp. Biol
172
,
83
92
Köhrer
K.
,
Emr
S. D.
(
1993
).
The yeast VPS17 gene encodes a membrane-associated protein required for the sorting of soluble vacuolar hydrolases.
J. Biol. Chem
268
,
559
569
Lian
J. P.
,
Stone
S.
,
Jiang
Y.
,
Lyons
P.
,
Ferro Novick
S.
(
1994
).
Ypt1p implicated in v-SNARE activation.
Nature
372
,
698
701
Lukowitz
W.
,
Mayer
U.
,
Jurgens
G.
(
1996
).
Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product.
Cell
84
,
61
71
Moehle
C. M.
,
Dixon
C. K.
,
Jones
E. W.
(
1989
).
Processing pathway for protease B of Saccharomyces cerevisiae.
J. Cell Biol
108
,
309
326
Nakamura
N.
,
Hirata
A.
,
Ohsumi
Y.
,
Wada
Y.
(
1997
).
Vam2/Vps41p and Vam6/Vps39p are components of a protein complex on the vacuolar membranes and involved in the vacuolar assembly in the yeast, Saccharomyces cerevisiae.
J. Biol. Chem
272
,
11344
11349
Noda
T.
,
Matsuura
A.
,
Wada
Y.
,
Ohsumi
Y.
(
1995
).
Novel system formonitoring autophagy in the yeast Saccharomyces cerevisiae.
Biochem. Biophys. Res. Commun
210
,
126
132
Nothwehr
S. F.
,
Conibear
E.
,
Stevens
T. H.
(
1995
).
Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.
J. Cell Biol
129
,
35
46
Ossig
R.
,
Dascher
C.
,
Trepte
H. H.
,
Schmitt
H. D.
,
Gallwitz
D.
(
1991
).
The yeast SLY gene products, suppressors of defects in the essential GTP-binding Ypt1 protein, may act in endoplasmic reticulum-to-Golgi transport.
Mol. Cell. Biol
11
,
2980
2993
Protopopov
V.
,
Govindan
B.
,
Novick
P.
,
Gerst
J. E.
(
1993
).
Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae.
Cell
74
,
855
861
Raymond
C. K.
,
Howald-Stevenson
I.
,
Vater
C. A.
,
Stevens
T. H.
(
1992
).
Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants.
Mol. Biol. Cell
3
,
1389
1402
Raymond
C. K.
,
Roberts
C. J.
,
Moore
K. E.
,
Howald
I.
,
Stevens
T. H.
(
1992
).
Biogenesis of the vacuole in Saccharomyces cerevisiae.
Int. Rev. Cytol
139
,
59
120
Rothman
J. H.
,
Hunter
C. P.
,
Valls
L. A.
,
Stevens
T. H.
(
1986
).
Overproduction-induced mislocalization of a yeast vacuolar protein allows isolation of its structural gene.
Proc. Nat. Acad. Sci. USA
83
,
3248
3252
Rothman
J. E.
(
1994
).
Mechanisms of intracellular protein transport.
Nature
372
,
55
63
Schimmöller
F.
,
Riezman
H.
(
1993
).
Involvement of Ypt7p, a small GTPase, in traffic from late endosome to the vacuole in yeast.
J. Cell Sci
106
,
823
830
Sikorski
R. S.
,
Hieter
P.
(
1989
).
A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae.
Genetics
122
,
19
28
Söllner
T.
,
Whiteheart
S.
,
Brunner
M.
,
Erdjument-Bromage
H.
,
Geromanos
S.
,
Tempst
P.
,
Rothman
J.
(
1993
).
SNAP receptors implicated in vesicle targeting and fusion.
Nature
362
,
318
324
Stack
J.
,
DeWald
D.
,
Takegawa
K.
,
Emr
S.
(
1995
).
Vesicle-mediated protein transport: regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast.
J. Cell Biol
129
,
321
334
Stack
J. H.
,
Horazdovsky
B.
,
Emr
S. D.
(
1995
).
Receptor-mediated protein sorting to the vacuole in yeast: roles for a protein kinase, a lipid kinase and GTP-binding proteins.
Annu. Rev. Cell Dev. Biol
11
,
1
33
Stevens
T. H.
,
Rothman
J. H.
,
Payne
G. S.
,
Schekman
R.
(
1986
).
Gene dosage-dependent secretion of yeast vacuolar carboxypeptidase Y.
J. Cell Biol
102
,
1551
1557
Sun
G. H.
,
Hirata
A.
,
Ohya
Y.
,
Anraku
Y.
(
1992
).
Mutations in yeast calmodulin cause defects in spindle pole body functions and nuclear integrity.
J. Cell Biol
119
,
1625
1639
Vida
T.
,
Huyer
G.
,
Emr
S.
(
1993
).
Yeast vacuolar proenzymes are sorted in the late Golgi complex and transported to the vacuole via a prevacuolar endosome-like compartment.
J. Cell Biol
121
,
1245
1256
Wada
Y.
,
Kitamoto
K.
,
Kanbe
T.
,
Tanaka
K.
,
Anraku
Y.
(
1990
).
The SLP1 gene of Saccharomyces cerevisiae is essential for vacuolar morphogenesis and function.
Mol. Cell. Biol
10
,
2214
2223
Wada
Y.
,
Anraku
Y.
(
1992
).
Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. II. VAM7, a gene for regulating morphogenic assembly of the vacuoles.
J. Biol. Chem
267
,
18671
18675
Wada
Y.
,
Ohsumi
Y.
,
Anraku
Y.
(
1992
).
Genes for directing vacuolar morphogenesis in Saccharomyces cerevisiae. I. Isolation and characterization of two classes of vam mutants.
J. Biol. Chem
267
,
18665
18670
Wichmann
H.
,
Hengst
L.
,
Gallwitz
D.
(
1992
).
Endocytosis in yeast: evidence for the involvement of a small GTP-binding protein (Ypt7p).
Cell
71
,
1131
1142
Woolford
C. A.
,
Daniels
L. B.
,
Park
F. J.
,
Jones
E. W.
,
van Arsdell
J. N.
,
Innis
M. A.
(
1986
).
The PEP4 gene encodes an aspartyl proteaseimplicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases.
Mol. Cell. Biol
6
,
2500
2510
Woolford
C. A.
,
Noble
J. A.
,
Garman
J. D.
,
Tam
M. F.
,
Innis
M. A.
,
Jones
E. W.
(
1993
).
Phenotypic analysis of proteinase A mutants: Implication for autoactivation and the maturation pathway of the vacuolar hydrolases of Saccharomyces cerevisiae.
J. Biol. Chem
268
,
8990
8998
Yaver
D. S.
,
Nelson
H.
,
Nelson
N.
,
Klionsky
D. J.
(
1993
).
VacuolarATPase mutants accumulate precursor proteins in a pre-vacuolar compartment.
J. Biol. Chem
268
,
10564
10572
Yoshihisa
T.
,
Anraku
Y.
(
1989
).
Nucleotide sequence of AMS1, the structure gene of vacuolar-mannosidase of Saccharomyces cerevisiae.
Biochem. Biophys. Res. Commun
163
,
908
915
This content is only available via PDF.