It is known that locally elevated Ca2+ at the growing tips of pollen tubes is necessary for pollen tube elongation. Here we show that this localized Ca2+ is also temporally regulated and is closely associated with pulsatile tip growth. Lilium longiflorum pollen tubes were injected with the photoprotein, aequorin, and the Ca2(+)-dependent light output was detected with a low noise photon-counting system. Ca2+ pulses with a mean period of 40 seconds were invariably associated with growth. The pulses were sporadic and of low amplitude for about the first 1.5 hours after germination. With subsequent growth, pulses increased in amplitude and the period between pulses became more regular. We have localized these Ca2+ pulses to the elongating end of the growing tube. The Ca2+ pulses are asymmetrical, rising more slowly than they fall. We estimate that the Ca2+ concentration at the peak of the pulses reaches nearly 10 microM. The addition of 100 microM La3+, a Ca2+ channel blocker, extinguished the pulses. An analysis of growth of elongating tubes establishes that extension is pulsatile, with a 42 second period between pulses. Calcium imaging, using the fluorescent indicator, Calcium Green dextran, shows that calcium pulses are coincident with peak growth rates.

REFERENCES

Blinks
J. R.
,
Wier
W. G.
,
Hess
P.
,
Prendergast
F. G.
(
1982
).
Measurement of Ca2+concentrations in living cells.
Prog. Biophys. Mol. Biol
40
,
1
114
Brewbaker
J. L.
,
Kwack
B. H.
(
1963
).
The essential role of calcium ion in pollen germination and pollen tube growth.
Am. J. Bot
50
,
859
865
Calakos
N.
,
Scheller
R. H.
(
1996
).
Synaptic vesicle biogenesis, docking, and fusion: a molecular description.
Physiol. Rev.
76
,
1
29
Cork
R. J.
,
Cicirelli
M. F.
,
Robinson
K. R.
(
1987
).
A rise in cytosolic calcium is not necessary for maturation of Xenopus laevis oocytes.
Dev. Biol
121
,
41
47
Ehrhardt
D. W.
,
Wais
R.
,
Long
S. R.
(
1996
).
Calcium spiking in plant root hairs responding to Rhizobium nodulation signals.
Cell
85
,
673
681
Franklin-Tong
V. E.
,
Ride
J. P.
,
Read
N. D.
,
Trewavas
A. J.
,
Franklin
F. C.
(
1993
).
The self-incompatability response in Papaver rhoeas is mediated by cytosolic free calcium.
Plant J
4
,
163
177
Franklin-Tong
V. E.
,
Drøbak
B. K.
,
Allan
A. C.
,
Watkins
P. A.
,
Trewavas
A. J.
(
1996
).
Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1,4,5-trisphosphate.
Plant Cell
8
,
1305
1321
Jaffe
L. A.
,
Weisenseel
M. H.
,
Jaffe
L. F.
(
1975
).
Calcium accumulations within the growing tips of pollen tubes.
J. Cell Biol
67
,
488
492
Keating
T. J.
,
Cork
R. J.
,
Robinson
K. R.
(
1994
).
Intracellular free calcium oscillations in normal and cleavage-blocked embryos and artificially activated eggs of Xenopus laevis.
J. Cell Sci
107
,
2229
2237
Kiehart
D. P.
(
1982
).
Microinjection of echinoderm eggs; apparatus and procedures.
Meth. Cell Biol
25
,
13
33
Lancelle
S. A.
,
Hepler
P. K.
(
1992
).
Ultrastructure of freeze-substituted pollen tubes of Lilium longiflorum.
Protoplasma
167
,
215
230
Larson
D. A.
(
1965
).
Fine-structural changes in the cytoplasm of germinating pollen.
Am. J. Bot
52
,
139
154
Lopez-Franco
R.
,
Bartnicki-Garcia
S.
,
Bracker
C. E.
(
1994
).
Pulsed growth of fungal hyphal tips.
Proc. Nat. Acad. Sci. USA
91
,
12228
12232
Malho
R.
,
Read
N. D.
,
Pais
M. S.
,
Trewavas
A. J.
(
1994
).
Role of cytosolic free calcium in the reorientation of pollen tube growth.
Plant J
5
,
331
341
Miller
D. D.
,
Callaham
D. A.
,
Gross
D. J.
,
Hepler
P. K.
(
1992
).
Free Ca2+gradient in growing pollen tubes of Lilium.
J. Cell Sci
101
,
7
12
Miller
A. L.
,
Karplus
E.
,
Jaffe
L. F.
(
1994
).
Imaging [Ca2+]iwith aequorin using a photon imaging detector.
Meth. Cell Biol
40
,
305
338
Picton
J. M.
,
Steer
M. W.
(
1985
).
The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion, and tip extension in pollen tubes.
Planta
163
,
20
26
Pierson
E. S.
,
Miller
D. D.
,
Callaham
D. A.
,
Shipley
N. M.
,
Rivers
B. A.
,
Hepler
P. K.
(
1994
).
Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTA-type buffers and hypertonic medium.
Plant Cell
6
,
1815
1828
Pierson
E. S.
,
Miller
D. D.
,
Callaham
D. A.
,
van Aken
J.
,
Hackett
G.
,
Hepler
P. K.
(
1996
).
Tip-localized calcium entry fluctuates during pollen tube growth.
Dev. Biol
174
,
160
173
Rathore
K. S.
,
Cork
R. J.
,
Robinson
K. R.
(
1991
).
A cytoplasmic gradient of Ca2+is correlated with the growth of lily pollen tubes.
Dev. Biol
148
,
612
619
Rosen
W. G.
,
Gawlik
S. R.
,
Dashek
W. V.
,
Siegesmund
K. A.
(
1964
).
Fine structure and cytochemistry of Lilium pollen tubes.
Am. J. Bot
51
,
61
71
Shimomura
O.
,
Musicki
B.
,
Kishi
Y.
,
Inouye
S.
(
1993
).
Light-emitting properties of recombinant semi-synthetic aequorins and recombinant flourescein-conjugated aequorin for measuring cellular calcium.
Cell Calcium
14
,
373
378
Weisenseel
M. H.
,
Jaffe
L. F.
(
1976
).
The major growth current through lily pollen tubes enters as K+and leaves as H+.
Planta
133
,
1
7
This content is only available via PDF.