Using a series of chimeric and truncated N-acetylglucosaminyltransferase I (NAGT I) molecules we have shown that part of the lumenal stalk region is both necessary and sufficient for kin recognition of mannosidase II and retention in the Golgi stack. The membrane-spanning domain was not required for retention, but replacing part or all of this domain with leucine residues did have a dramatic effect on Golgi morphology. In stable cell lines, stacked cisternae were replaced by tubulo-vesicular clusters containing the mutated NAGT I. The loss of stacked cisternae was proportional to the number of leucines used to replace the membrane-spanning domain.

Aoki
D.
,
Lee
N.
,
Yamaguchi
N.
,
Dubois
C.
,
Fukuda
M. N.
(
1992
).
Golgi retention of a trans -Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain.
Proc. Nat. Acad. Sci. USA
89
,
4319
4323
Bretscher
M. S.
,
Munro
S.
(
1993
).
Cholesterol and the Golgi apparatus.
Science
261
,
1280
1281
Burke
J.
,
Pettit
J. M.
,
Schachter
H.
,
Sarkas
M.
,
Gleeson
P. A.
(
1992
).
The transmembrane and flanking sequences of signal1, 2-N-acetylglucosaminyltransferase specify medial -Golgi localization.
J. Biol. Chem
267
,
24433
24440
Burke
J.
,
Pettit
J. M.
,
Humphris
D.
,
Gleeson
P. A.
(
1994
).
Medial -Golgi retention of N-acetylglucosaminyltransferase I. Contribution from all domains of the enzyme.
J. Biol. Chem
269
,
12049
12059
Dunphy
W. G.
,
Rothman
J. E.
(
1985
).
Compartmental organization of the Golgi stack.
Cell
42
,
13
21
Evan
G. I.
,
Lewis
G. K.
,
Ramsay
G.
,
Bishop
J. M.
(
1985
).
Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.
Mol. Cell Biol
5
,
3610
3616
Lotteau
V.
,
Teyton
L.
,
Peleraux
A.
,
Nilsson
T.
,
Karlsson
L.
,
Schmid
S.L.
,
Quaranta
V.
,
Peterson
P. A.
(
1990
).
Intracellular transport of class II MHC molecules directed by invariant chain.
Nature
348
,
600
605
Louvard
D.
,
Reggio
H.
,
Warren
G.
(
1982
).
Antibodies to the Golgi complex and the rough endoplasmic reticulum.
J. Cell Biol
92
,
92
107
Lucocq
J. M.
,
Berger
E. G.
,
Warren
G.
(
1989
).
Mitotic Golgi fragments in HeLa cells and their role in the reassembly pathway.
J. Cell Biol
109
,
463
474
Machamer
C. E.
(
1993
).
Targeting and retention of Golgi membrane proteins.
Curr. Opin. Cell Biol
5
,
606
612
Machamer
C. E.
,
Grim
M. G.
,
Esquela
A.
,
Chung
S. W.
,
Rolls
M.
,
Ryan
K.
,
Swift
A. M.
(
1993
).
Retention of a cis Golgi protein requires polar residues on one face of a predicted alpha-helix in the transmembrane domain.
Mol. Biol. Cell
4
,
695
704
Munro
S.
(
1991
).
Sequences within and adjacent to the transmembrane segment of-2,6-sialyltransferase specify Golgi retention.
EMBO J
10
,
3577
3588
Munro
S.
(
1995
).
An investigation of the role of transmembrane domains in Golgi protein retention.
EMBO J
14
,
4695
4704
Nilsson
T.
,
Jackson
M.
,
Peterson
P. A.
(
1989
).
Short cytoplasmic sequences serve as retention signals for transmembrane proteins in the endoplasmic reticulum.
Cell
58
,
707
18
Nilsson
T.
,
Lucocq
J. M.
,
Mackay
D.
,
Warren
G.
(
1991
).
The membrane-spanning domain of-1, 4-galactosyltransferase specifies trans Golgi localization.
EMBO J
10
,
3567
3575
Nilsson
T.
,
Pypaert
M.
,
Hoe
M. H.
,
Slusarewicz
P.
,
Berger
E. G.
,
Warren
G.
(
1993
).
Overlapping distribution of two glycosyltransferases in the Golgi apparatus of HeLa cells.
J. Cell Biol
120
,
5
13
Nilsson
T.
,
Slusarewicz
P.
,
Hoe
M. H.
,
Warren
G.
(
1993
).
Kin recognition. A model for the retention of Golgi enzymes.
FEBS Lett
330
,
1
4
Nilsson
T.
,
Hoe
M. H.
,
Slusarewicz
P.
,
Rabouille
C.
,
Watson
R.
,
Hunte
F.
,
Watzele
G.
,
Berger
E. G.
,
Warren
G.
(
1994
).
Kin recognition between medial Golgi enzymes in HeLa cells.
EMBO J
13
,
562
574
Nilsson
T.
,
Warren
G.
(
1994
).
Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus.
Curr. Opin. Cell Biol
6
,
517
521
Orci
L.
,
Montesano
R.
,
Meda
P.
,
Malaisse Lagae
F.
,
Brown
D.
,
Perrelet
A.
,
Vassalli
P.
(
1981
).
Heterogeneous distribution of filipin-cholesterol complexes across the cisternae of the Golgi apparatus.
Proc. Nat. Acad. Sci. USA
78
,
293
297
Pääbo
S.
,
Weber
F.
,
Nilsson
T.
,
Schaffner
W.
,
Peterson
P. A.
(
1986
).
Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein.
EMBO J
5
,
1921
1927
Pelham
H. R.
,
Munro
S.
(
1993
).
Sorting of membrane proteins in the secretory pathway.
Cell
75
,
603
605
Rabouille
C.
,
Hui
N.
,
Hunte
F.
,
Kieckbusch
R.
,
Berger
E. G.
,
Warren
G.
,
Nilsson
T.
(
1995
).
Mapping the distribution of Golgi enzymes involved in the construction of complex oligosaccharides.
J. Cell Sci
108
,
1617
1627
Rabouille
C.
,
Nilsson
T.
(
1995
).
Redrawing compartmental boundaries in the exocytic pathway.
FEBS Lett
369
,
97
100
Rothman
J. E.
,
Warren
G.
(
1994
).
Implications of the SNARE hypothesis for intracellular membrane topology and dynamics.
Curr. Biol
4
,
220
233
Slusarewicz
P.
,
Nilsson
T.
,
Hui
N.
,
Watson
R.
,
Warren
G.
(
1994
).
Isolation of a matrix that binds medial Golgi enzymes.
J. Cell Biol
124
,
405
413
Souter
E.
,
Pypaert
M.
,
Warren
G.
(
1993
).
The Golgi stack reassembles during telophase before arrival of proteins transported from the endoplasmic reticulum.
J. Cell Biol
122
,
533
540
Schutze
M. P.
,
Peterson
P. A.
,
Jackson
M. R.
(
1994
).
An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum.
EMBO J
13
,
1696
1705
Slusarewicz
P.
,
Nilsson
T.
,
Hui
N.
,
Watson
R.
,
Warren
G.
(
1994
).
Isolation of a matrix that binds medial Golgi enzymes.
J. Cell Biol
124
,
405
413
Tang
B. L.
,
Wong
S. H.
,
Low
S. H.
,
Hong
W.
(
1992
).
The transmembrane domain of N-glucosaminyltransferase I contains a Golgi retention signal.
J. Biol. Chem
267
,
10122
10126
Tang
B. L.
,
Low
S. H.
,
Wong
S. H.
,
Hong
W.
(
1995
).
Cell type differences in Golgi retention signals for transmembrane proteins.
Eur. J. Cell Biol
66
,
365
374
Tokuyasu
K. T.
(
1980
).
Immunochemistry on ultrathin frozen sections.
Histochem. J
12
,
381
403
This content is only available via PDF.