Cell migration is a complex process that can be considered as a repeated cycle of lamellipod extension and attachment, cytoskeletal contraction, and tail detachment. While lamellipodial and cytoskeletal phenomena are currently the focus of considerable research on cell migration, under many conditions locomotion appears to be rate-limited by events at the cell rear, especially release of cell/substratum adhesions. To study the mechanism of tail detachment, we have developed a novel experimental system that permits observation of integrin dynamics on the ventral surface of migrating fibroblasts. Photoactivatable caged fluorescein is coupled to a non-adhesion-perturbing anti-avian-beta 1 integrin subunit antibody, which labels integrins on chicken fibroblasts migrating on a laminin-coated glass coverslip. Ultraviolet light is focused through a pinhole to photoactivate the caged fluorophore in a 10-micron-diameter spot at the rear of a polarized cell. The fate of integrins initially present in this spot is monitored using a cooled CCD camera to follow the movement of fluorescent intensity as a function of time over a 2 to 3 hour period. We find that a substantial fraction of the integrins is left behind on the substratum as the cell detaches and locomotes, while another fraction collects into vesicles which are transported along the cell body as the cell migrates. As aggregates rip from the cell membrane, the integrin-cytoskeletal bonds are preferentially fractured resulting in 81 +/- 15% of the integrin remaining attached to the substratum. We additionally find that adhesions sometimes disperse into integrins which can form new adhesions at other locations in the cell. Adhesions along the cell edge can release from the substrate and translocate with the cell. They either disperse in the cell membrane, rip from the cell membrane and remain attached to the substratum, or form a new aggregate. These observations indicate that the behavior of integrins at the cell rear is much more dynamic than previously appreciated, suggesting that an important locus for regulation of motility may reside in this region.

REFERENCES

Abercrombie
M.
,
Heaysman
J. E. M.
,
Pegrun
S. M.
(
1970
).
The locomotion of fibroblasts in culture. I. Movements of the leading edge.
Exp. Cell Res
59
,
393
398
Altankov
G.
,
Grinnell
F.
(
1995
).
Fibronectin receptor internalization and AP-2 complex reorganization in potassium-depleted fibroblasts.
Exp. Cell Res
216
,
1
11
Bretscher
M. S.
(
1989
).
Endocytosis and recycling of the fibronectin receptor in CHO cells.
EMBO J
8
,
1341
1348
Buck
C. A.
,
Horwitz
A. F.
(
1987
).
Cell surface receptors for extracellular matrix molecules.
Annu. Rev. Cell Biol
3
,
179
205
Burridge
K.
,
Fath
K.
,
Kelly
T.
,
Nuckolls
G.
,
Turner
C.
(
1988
).
Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton.
Annu. Rev. Cell. Biol
48
,
487
525
Chen
W.-T.
(
1981
).
Mechanism of retraction of the trailing edge during fibroblast movement.
J. Cell Biol
90
,
187
200
Crowley
E.
,
Horwitz
A. F.
(
1995
).
Tyrosine phosphorylation and cytoskeletal tension regulate the release of fibroblast adhesions.
J. Cell Biol
131
,
525
537
DiMilla
P. A.
,
Barbee
K.
,
Lauffenburger
D. A.
(
1991
).
Mathematical model for the effects of adhesion and mechanics on cell migration speed.
Biophys. J
60
,
15
37
DiMilla
P. A.
,
Stone
J. A.
,
Quinn
J. A.
,
Albeda
S. M.
,
Lauffenburger
D. A.
(
1993
).
Maximal migration of human smooth muscle cells on fibronectin and type-IV collagen occurs at an intermediate attachment strength.
J. Cell Biol
122
,
729
737
Duband
J. L.
,
Nuckolls
G. H.
,
Ishihara
A.
,
Hasegawa
T.
,
Yamada
K. M.
,
Thiery
J. P.
,
Jacobson
K.
(
1988
).
Fibronectin receptor exhibits high lateral mobility in embryonic locomoting cells but is immobile in focal contacts and fibrillar streaks in stationary cells.
J. Cell Biol
107
,
1385
1396
Dunlevy
J. R.
,
Couchman
J. R.
(
1993
).
Controlled induction of focal adhesion disassembly and migration in primary fibroblasts.
J. Cell Sci
105
,
489
500
Felder
S.
,
Elson
E. L.
(
1990
).
Mechanics of fibroblast locomotion: quantitative analysis of forces and motions at the leading lamellas of fibroblasts.
J. Cell Biol
111
,
2527
2536
Ginsberg
M. H.
,
Du
X.
,
Plow
E. F.
(
1992
).
Inside-out integrin signaling.
Curr. Opin. Cell Biol
4
,
766
771
Hay
E. D.
(
1985
).
Interaction of migrating embryonic cells with extracellular matrix.
Exp. Biol. Med
10
,
174
193
Holifield
B. F.
,
Jacobson
K.
(
1991
).
Mapping trajectories of Pgp-1 membrane protein patches on surfaces of motile fibroblasts reveals a distinct boundary separating capping on the lamella and forward transport of the retracting tail.
J. Cell Sci
98
,
191
203
Hynes
R. O.
(
1992
).
Integrins: versatility, modulation and signaling in cell adhesion.
Cell
69
,
11
25
Jay
P. Y.
,
Pham
P. A.
,
Wong
S. A.
,
Elson
E. L.
(
1995
).
A mechanical function of myosin II in cell motility.
J. Cell Sci
108
,
387
393
Lawson
M. A.
,
Maxfield
F. R.
(
1995
).
Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils.
Nature
377
,
75
79
Lo
S. H.
,
Chen
L. B.
(
1994
).
Focal adhesion as a signal transduction organelle.
Cancer Metast. Rev.
13
,
9
24
Marks
P. W.
,
Hendey
B.
,
Maxfield
F. R.
(
1991
).
Attachment to fibronectin or vitronectin makes human neutrophil migration sensitive to alterations in cytosolic free calcium concentration.
J. Cell Biol
112
,
149
158
Miyamoto
S.
,
Akiyama
S. K.
,
Yamada
K. M.
(
1995
).
Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function.
Science
267
,
883
885
Neff
N. T.
,
Lowrey
C.
,
Decker
C.
,
Tovar
C.
,
Damsky
C.
,
Buck
C.
,
Horwitz
A. F.
(
1982
).
A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices.
J. Cell Biol
95
,
654
666
Nobes
C. D.
,
Hall
A.
(
1995
).
Rho, rac and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filipodia.
Cell
81
,
53
62
Regen
C. M.
,
Horwitz
A. F.
(
1992
).
Dynamics of1integrin-mediated adhesive contacts in motile fibroblasts.
J. Cell Biol
119
,
1347
1359
Ruoslahti
E.
,
Hayman
E. G.
,
Pierschbacher
M.
,
Engvall
E.
(
1982
).
Fibronectin: purification, immunochemical properties, and biological activities.
Meth. Enzymol
82
,
803
831
Ruoslahti
E.
,
Pierschbacher
M. D.
(
1987
).
New perspectives in cell adhesion.
Science
238
,
491
497
Rupert
T.
,
Rohde
H.
,
Risteli
L.
,
Ott
U.
,
Robey
P. G.
,
Martin
G. R.
(
1982
).
Laminin.
Meth. Enzymol
82
,
831
837
Sastry
S.
,
Horwitz
A. F.
(
1993
).
Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signaling.
Curr. Opin. Cell Biol
5
,
819
831
Schmidt
C.
,
Horwitz
A. F.
,
Lauffenburger
D. A.
,
Sheetz
M. P.
(
1993
).
Integrin/cytoskeleton interactions in migrating fibroblasts are dynamic, asymmetric, and regulated.
J. Cell Biol
123
,
977
991
Sczekan
M. M.
,
Juliano
R. L.
(
1990
).
Internalization of the fibronectin receptor is a constitutive process.
J. Cell. Physiol
142
,
574
580
Sonnenberg
A.
(
1993
).
Integrins and their ligands.
Curr. Top. Microbiol. Immunol
184
,
7
26
Tawil
N.
,
Wilson
P.
,
Carbonetto
S.
(
1993
).
Integrins in point contacts mediate cell spreading- factors that regulate integrin accumulation in point contacts vs. focal contacts.
J. Cell Biol
120
,
261
271
Tranqui
L.
,
Usson
Y.
,
Marie
C.
,
Block
M. R.
(
1993
).
Adhesion of CHO cells to fibronectin is mediated by functionally and structurally distinct adhesion plaques.
J. Cell Sci
106
,
377
387
Watts
C.
,
Marsh
M.
(
1992
).
Endocytosis: what goes in and how?.
J. Cell Sci
103
,
1
8
Wessels
D.
,
Vawter-Hugart
H.
,
Murray
J.
,
Soll
D. R.
(
1994
).
Three-dimensional dynamics of pseudopod formation and the regulation of turning during the motility cycle of Dictyostelium.
Cell Motil. Cytoskel
27
,
1
12
This content is only available via PDF.