The flexural rigidity of single microtubules is measured using optical tweezers. Two new methods are presented. In both the optical forces of the laser trap are used to directly manipulate microtubules grown off the ends of Chlamydomonas axonemes. The shapes of the microtubules are observed by video microscopy as the hydrodynamic forces of viscous flow counteract the elastic restoring forces when the microtubules are moved actively relative to the surrounding buffer medium. To determine the flexural rigidity, the bending of a microtubule is analyzed under a given velocity distribution along its length. Microtubules incubated with taxol after polymerization are measured to be more flexible than those without taxol added. On the other hand, MAPs are shown to increase microtubule stiffness.

Arnal
I.
,
Wade
R. H.
(
1995
).
How does taxol stabilize microtubules?.
Curr. Biol
5
,
900
908
Ashkin
A.
,
Dziedzic
J. M.
(
1987
).
Optical trapping and manipulation of viruses and bacteria.
Science
235
,
1517
1520
Dye
R. B.
,
Fink
S. P.
,
Williams
R. C.
(
1993
).
Taxol-induced flexibility of microtubules and its reversal by MAP-2 and tau.
J. Biol. Chem
268
,
6847
6850
Finer
J. T.
,
Simmons
R. M.
,
Spudich
J. A.
(
1994
).
Single myosin molecule mechanics: piconewton forces and nanometre steps.
Nature
368
,
113
119
Gittes
F.
,
Mickey
B.
,
Nettleton
J.
,
Howard
J.
(
1993
).
Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape.
J. Cell Biol
120
,
923
934
Hunt
A. J.
,
Gittes
F.
,
Howard
J.
(
1994
).
The force exerted by a single kinesin molecule against a viscous load.
Biophys. J
67
,
766
781
Johnson
M. L.
(
1994
).
Use of least-squares techniques in biochemistry.
Meth. Enzymol
240
,
1
22
King
S. M.
,
Otter
T.
,
Witman
G. B.
(
1986
).
Purification and characterization of Chlamydomonas flagellar dyneins.
Meth. Enzymol
134
,
291
306
Kuo
S. C.
,
Sheetz
M. P.
(
1993
).
Force of single kinesin molecules measured with optical tweezers.
Science
260
,
232
234
Kurachi
M.
,
Hoshi
M.
,
Tashiro
H.
(
1995
).
Buckling of a single microtubule by optical trapping forces: direct measurement of microtubule rigidity.
Cell Motil. Cytoskel
30
,
221
228
Mandelkow
E.
,
Mandelkow
E.-M.
(
1995
).
Microtubules and microtubule-associated proteins.
Curr. Opin. Cell Biol
7
,
72
81
Mandelkow
E.-M.
,
Hermann
M.
,
Ruhl
U.
(
1985
).
Tubulin domains probed by limited protolysis and subunit-specific antibodies.
J. Mol. Biol
185
,
311
327
Mickey
B.
,
Howard
J.
(
1995
).
Rigidity of microtubules is increased by stabilizing agents.
J. Cell Biol
130
,
909
917
Scheele
R. B.
,
Bergen
L. G.
,
Borisy
G. G.
(
1982
).
Control of the structural fidelity of microtubules by initiation sites.
J. Mol. Biol
154
,
485
500
Schiff
P. B.
,
Fant
J.
,
Horwitz
S. B.
(
1979
).
Promotion of microtubule assembly in vitro by taxol.
Nature
277
,
665
667
Shelanski
M. L.
,
Gaskin
F.
,
Cantor
C. R.
(
1973
).
Assembly of microtubules in the absence of added nucleotides.
Proc. Nat. Acad. Sci. USA
70
,
765
768
Svoboda
K.
,
Schmidt
C. F.
,
Schnapp
B. J.
,
Block
S. M.
(
1993
).
Direct observation of kinesin stepping by optical trapping interferometry.
Nature
365
,
721
727
Venier
P.
,
Maggs
A. C.
,
Carlier
M.-F.
,
Pantaloni
D.
(
1994
).
Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations.
J. Biol. Chem
269
,
13353
13360
Venier
P.
,
Maggs
A. C.
,
Carlier
M.-F.
,
Pantaloni
D.
(
1995
).
Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations.
J. Biol. Chem
270
,
17056
–.
Walker
R. A.
,
O'Brian
E. T.
,
Pryer
N. K.
,
Soboeiro
M. F.
,
Voter
W. A.
,
Erickson
H. P.
,
Salmon
E. D.
(
1988
).
Dynamic instability of individual microtubules analyzed by video light microscopyrate constants and transition frequencies.
J. Cell Biol
107
,
1437
1448
Witman
G. B.
(
1986
).
Isolation of Chlamydomonas flagella and flagellar axonemes.
Meth. Enzymol
134
,
280
290
This content is only available via PDF.