Filensin and phakinin constitute the subunits of a heteropolymeric, lens-specific intermediate filament (IF) system known as the beaded-chain filaments (BFs). Since the rod of filensin is four heptads shorter than the rods of all other IF proteins, we decided to examine the specific contribution of this protein in filament assembly. For these purposes, we constructed chimeric proteins in which regions of filensin were exchanged with the equivalent ones of vimentin, a self-polymerizing IF protein. Our in vitro studies show that the filensin rod domain does not allow homopolymeric filament elongation. However, the filensin rod is necessary for co-polymerization of filensin with phakinin and seems to counteract the inherent tendency of the latter protein to homopolymerize into large, laterally associated filament bundles. Apart from the rod domain, the presence of an authentic or substituted tail domain in filensin is also essential for co-assembly with the naturally tail-less phakinin and formation of extended filaments in vitro. Finally, transfection experiments in CHO and MCF-7 cells show that the rod domain of filensin plays an important role in de novo filament formation and distribution. The same type of analysis further suggests that the end-domains of filensin interact with cell-specific, assembly-modulating factors.

Albers
K.
,
Fuchs
E.
(
1987
).
The expression of mutant epidermal keratin cDNAs transfected in simple epithelial and squamous cell carcinoma cells.
J. Cell Biol
105
,
791
806
Albers
K.
,
Fuchs
E.
(
1989
).
Expression of mutant keratin cDNAs in epithelial cells reveals possible mechanisms for initiation and assembly of intermediate filaments.
J. Cell Biol
108
,
1477
1493
Bader
B. L.
,
Magin
T. M.
,
Freudenmann
M.
,
Stumpp
S.
,
Franke
W. W.
(
1991
).
Intermediate filaments formed de novo from tail-less cytokeratins in the cytoplasm and in the nucleus.
J. Cell Biol
115
,
1293
1307
Brunkener
M.
,
Georgatos
S. D.
(
1992
).
Membrane-binding properties of filensin, a cytoskeletal protein of the lens fiber cells.
J. Cell Sci
103
,
709
718
Eckelt
A.
,
Herrmann
H.
,
Franke
W. W.
(
1992
).
Assembly of a tail-less mutant of the intermediate filament protein, vimentin, in vitro and in vivo.
Eur. J. Cell Biol
58
,
319
330
Evan
G. I.
,
Lewis
G. K.
,
Ramsay
G.
,
Bishop
J. M.
(
1985
).
Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product.
Mol. Cell Biol
5
,
3610
3616
Fowler
,
Aebi
U.
(
1983
).
Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing.
J. Ultrastruct. Res
83
,
319
334
Fuchs
E.
,
Weber
K.
(
1994
).
Intermediate filaments: Structure, dynamics, function, and disease.
Annu. Rev. Biochem
63
,
345
382
Fig. 7 (1993). Bar, 2m. filaments and characterizes one higher-level complex between protofilaments. Eur. J. Biochem 207, 841–852
Georgatos
S. D.
,
Gounari
F.
,
Remington
S.
(
1994
).
The beaded intermediate filaments and their potential functions in eye lens.
BioEssays
16
,
413
418
Georgatos
S. D.
,
Maison
C.
(
1996
).
Integration of intermediate filaments into cellular organelles.
Int. Rev. Cytol
164
,
91
138
Gounari
F.
,
Merdes
A.
,
Quinlan
R.
,
Hess
J.
,
FitzGerald
P. G.
,
Ouzounis
C. A.
,
Georgatos
S. D.
(
1993
).
Bovine filensin possesses primary and secondary structure similarity to intermediate filament proteins.
J. Cell Biol
121
,
847
853
Hatzfeld
M.
,
Weber
K.
(
1990
).
Tailless keratins assemble into regular intermediate filamens in vitro.
J. Cell Sci
97
,
317
324
Hatzfeld
M.
,
Weber
K.
(
1991
).
Modulation of keratin intermediate filament assembly by single amino acid exchanges in the consensus sequence at the C-terminal end of the rod domain.
J. Cell Sci
99
,
351
362
Hatzfeld
M.
,
Dodenmont
H.
,
Plessmann
U.
,
Weber
K.
(
1992
).
Truncation of recombinant vimentin by ompT. Identification of a short motif in the head domain necessary for assembly of type III intermediate filament proteins.
FEBS Lett
302
,
239
242
Heins
S.
,
Wong
P. C.
,
Muller
S.
,
Godie
K.
,
Cleveland
D. W.
,
Aebi
U.
(
1993
).
The rod domain of NF-L determines neurofilament architecture, whereas the end domains specify filament assembly and network formation.
J. Cell Biol
123
,
1517
1533
Heins
S.
,
Aebi
U.
(
1994
).
Making heads and tails of intermediate filament assembly, dynamics and networks.
Curr. Opin. Cell Biol
6
,
25
33
Hermann
H.
,
Hofmann
I.
,
Franke
W. W.
(
1992
).
Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly.
J. Mol. Biol
223
,
637
650
Hess
J. F.
,
Casselman
J. T.
,
FitzGerald
P. G.
(
1993
).
cDNA analysis of the 49 kDa lens fiber cell cytoskeletal protein: a new lens specific member of the intermediate filament family?.
Curr. Eye Res
12
,
77
88
Hofmann
I.
,
Herrmann
H.
(
1992
).
Interference in vimentin assembly in vitro by synthetic peptides derived from the vimentin head domain.
J. Cell Sci
101
,
687
700
Kaufmann
E.
,
Weber
K.
,
Geisler
N.
(
1985
).
Intermediate filament forming ability of desmin and vimentin derivatives lacking either the amino-terminal 67 or the carboxy-terminal 27 residues.
J. Mol. Biol
185
,
733
742
Kouklis
P. D.
,
Papamarcaki
T.
,
Merdes
A.
,
Georgatos
S. D.
(
1991
).
A potential role for the COOH-terminal domain in the lateral packing of type III intermediate filaments.
J. Cell Biol
114
,
773
786
Kouklis
P. D.
,
Hatzfeld
M.
,
Brunkener
M.
,
Weber
K.
,
Georgatos
S. D.
(
1993
).
In vitro assembly properties of vimentin mutagenized at the-site tail motif.
J. Cell Sci
106
,
919
928
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Letai
A.
,
Coulombe
P.
,
Fuchs
E.
(
1992
).
Do the ends justify the mean? Proline mutations at the ends of the keratin coiled-coil rod segment are more disruptive than internal mutations.
J. Cell Biol
116
,
1181
1195
Lu
X.
,
Lane
E. B.
(
1990
).
Retrovirus-mediated transgenic keratin expression in cultured fibroblasts: Specific domain functions in keratin stabilisation and filament formation.
Cell
62
,
681
696
Maisel
H.
,
Perry
M. M.
(
1972
).
Electron microscopic observations on some structural proteins of the chick lens.
Exp. Eye Res
14
,
7
12
Masaki
S.
,
Watanabe
T.
(
1992
).
cDNA sequence analysis of CP95: Rat lens fiber cell beaded-filament structural protein shows homology to cytokeratins.
Biochem. Biophys. Res. Commun
186
,
190
198
McCormick
M. B.
,
Kouklis
P.
,
Syder
A.
,
Fuchs
E.
(
1993
).
The roles of the rod end and the tail in vimentin IF assembly and IF network formation.
J. Cell Biol
122
,
395
407
Merdes
A.
,
Brunkener
M.
,
Horstmann
H.
,
Georgatos
S. D.
(
1991
).
Filensin: A new vimentin-binding, polymerization-competent and membrane associated protein of the lens fiber cell.
J. Cell Biol
115
,
397
410
Merdes
A.
,
Gounari
F.
,
Georgatos
S. D.
(
1993
).
The 47-kD lens-specific protein phakinin is a tailless intermediate filament protein and an assembly partner of filensin.
J. Cell Biol
123
,
1507
1516
Nakamura
Y.
,
Takeda
M.
,
Aimoto
S.
,
Hariguchi
S.
,
Kitajima
S.
,
Nishimura
T.
(
1993
).
Acceleration of bovine neurofilament L assembly by deprivation of acidic tail domain.
Eur. J. Biochem
212
,
565
571
Papamarkaki
T.
,
Kouklis
P.
,
Kreis
T. E.
,
Georgatos
S. D.
(
1991
).
The ‘lamin b-fold’.
J. Biol. Chem
226
,
21247
21251
Quinlan
R. A.
,
Moir
R. D.
,
Stewart
M.
(
1989
).
Expression in Escherichia coli of fragments of glial fibrillary acidic protein: characterization, assembly properties and paracrystal formation.
J. Cell Sci
93
,
71
83
Raats
J. M. H.
,
Henderik
J. B. J.
,
Verdijk
M.
,
van Oort
F. L. G.
,
Gerards
W. L. H.
,
Ramaeckers
F. S. C.
,
Bloemendal
H.
(
1991
).
Assembly of carboxy-terminally deleted desmin in vimentin-free cells.
Eur. J. Cell Biol
56
,
84
103
Remington
S. G.
(
1993
).
Chicken filensin: A lens fiber cell protein that exhibits sequence similarity to intermediate filament proteins.
J. Cell. Sci
103
,
709
718
Shoeman
R. L.
,
Mothes
E.
,
Kesselmeier
C.
,
Traub
P.
(
1990
).
Intermediate filament assembly and stability in vitro: Effect and implications of the removal of head and tail domains of vimentin by the human immunodeficiency virus type I protease.
Cell Biol. Int. Rep
14
,
583
594
Steinert
P. M.
,
Marekov
L. N.
,
Parry
D. A. D.
(
1993
).
Conservation of the structure of keratin intermediate filaments: Molecular mechanism by which different keratin molecules integrate into preexisting keratin intermediate filaments during differentiation.
Biochemistry
32
,
10046
10056
Steinert
P. M.
,
Marekov
L. N.
,
Fraser
R. D. B.
,
Parry
D. A. D.
(
1993
).
Keratin intermediate filament structure. Crosslinking studies yield quantitative information on molecular dimensions and mechanism of assembly.
J. Mol. Biol
230
,
436
452
Steinert
P. M.
,
Marekov
L. N.
,
Parry
D. A. D.
(
1993
).
Diversity of intermediate filament structure.
J. Biol. Chem
258
,
24916
24925
Studier
F. W.
,
Rosenberg
A. H.
,
Dunn
J. J.
,
Dubendorfl
J. W.
(
1990
).
Use of T4 RNA polymerase to direct expression of cloned genes.
Meth. Enzymol
185
,
60
89
Traub
P.
,
Vorgias
C. E.
(
1983
).
Involvement of the N-terminal polypeptide of vimentin in the formation of intermediate filaments.
J. Cell Sci
63
,
43
67
Wilson
A. K.
,
Coulombe
P. A.
,
Fuchs
E.
(
1992
).
The roles of K5 and K14 head, tail and R/K L L E G E domains in keratin filament assembly in vitro.
J. Cell Biol
119
,
401
414
Wingler
M.
,
Sweet
R.
,
Sim
G. K.
,
Wold
B.
,
Pellicer
A.
,
Lacy
E.
,
Maniatis
T.
,
Silverstein
S.
,
Axel
R.
(
1979
).
T9 transformation of mammalian cells with genes from prokaryotes and eukaryotes.
Cell
16
,
777
785
Wong
P. C.
,
Cleveland
D. W.
(
1990
).
Characterization of dominant and recessive assembly defective mutations in mouse neurofilament NF-M.
J. Cell Biol
111
,
1987
2004
This content is only available via PDF.