Active sliding between doublet microtubules of sea urchin sperm axonemes that were demembranated with Triton X-100 in the presence or absence of calcium was induced with ATP and elastase at various concentrations of Ca2+ to examine the effects of Ca2+ on the direction of the power stroke of the dynein arms. Dark-field light microscopy of microtubule sliding revealed that the sliding from the axonemes demembranated with Triton and millimolar calcium and disintegrated with ATP and elastase showed various patterns of sliding disintegration, including loops of doublet microtubules formed near the head or the basal body. These loops were often thicker than the remaining axonemal bundle. In contrast, only thinner loops were found from the axonemes demembranated with Triton in the absence of calcium and disintegrated with ATP and elastase at high Ca2+ concentrations. Electron microscopic examination of the direction of microtubule sliding showed that the doublet microtubules in the axonemes demembranated in the presence of millimolar calcium moved toward the base of the axonemes by the dynein arms on the adjacent doublet microtubule as well as by their own dynein arms. Doublet microtubules in the axonemes demembranated in the absence of calcium moved toward the base of the axonemes only by their own dynein arms. Similar observations have been obtained from the axonemes from which the outer dynein arms were selectively extracted. From these observations, we can conclude that the dynein arms generate force in both directions and this feature of the dynein arms arises from at least the inner dynein arms.

REFERENCES

Bers
D. M.
,
Patton
C. W.
,
Nuccitelli
R.
(
1994
).
A practical guide to the preparation of Ca2+buffers.
Meth. Cell Biol
40
,
3
29
Brokaw
C. J.
(
1980
).
Elastase digestion of demembranated sperm flagella.
Science
207
,
1365
1367
Brokaw
C. J.
,
Nagayama
S. M.
(
1985
).
Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin.
J. Cell Biol
100
,
1875
1883
Brokaw
C. J.
(
1986
).
Sperm motility.
Meth. Cell Biol
27
,
41
56
Brokaw
C. J.
(
1991
).
Calcium sensors in sea urchin sperm flagella.
Cell Motil. Cytoskel
18
,
123
130
Brokaw
C. J.
(
1994
).
Control of flagellar bending: A new agenda based on dynein diversity.
Cell Motil. Cytoskel
28
,
199
204
Euteneuer
U.
,
McIntosh
J. R.
(
1981
).
Polarity of some motility-related microtubules.
Proc. Nat. Acad. Sci. USA
78
,
372
376
Euteneuer
U.
,
Koonce
M. P.
,
Pfister
K. K.
,
Schliwa
M.
(
1988
).
An ATPase with properties expected for the organelle motor of the giant amoeba, Reticulomyxa.
Nature
332
,
176
178
Fox
L. A.
,
Sale
W. S.
(
1987
).
Direction of force generated by the inner row of dynein arms on flagellar microtubules.
J. Cell Biol
105
,
1781
1787
Gibbons
B. H.
,
Gibbons
I. R.
(
1973
).
The effect of partial extraction of dynein arms of the movement of reactivated sea urchin sperm.
J. Cell Sci
13
,
337
357
Gibbons
B. H.
,
Gibbons
I. R.
(
1980
).
Calcium-induced quiescence in reactivated sea urchin sperm.
J. Cell Biol
84
,
13
27
Gibbons
I. R.
(
1981
).
Cilia and flagella of eukaryotes.
J. Cell Biol
91
,
107
–.
Gibbons
I. R.
(
1988
).
Dynein ATPases as microtubule motors.
J. Biol. Chem
263
,
15837
15840
Goldstein
D. A.
(
1979
).
Calculation of the concentration of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands.
Biophys. J
26
,
235
242
Ishijima
S.
,
Hamaguchi
Y.
(
1992
).
Relationship between direction of rolling and yawing of golden hamster and sea urchin spermatozoa.
Cell Struct. Funct
17
,
319
323
Ishijima
S.
,
Hamaguchi
M. S.
,
Naruse
M.
,
Ishijima
S. A.
,
Hamaguchi
Y.
(
1992
).
Rotational movement of a spermatozoon around its long axis.
J. Exp. Biol
163
,
15
31
Ishijima
S.
,
Hamaguchi
Y.
(
1993
).
Calcium ion regulation of chirality of beating flagellum of reactivated sea urchin spermatozoa.
Biophys. J
65
,
1445
1448
Ishijima
S.
(
1995
).
High-speed video microscopy of flagella and cilia.
Meth. Cell Biol
47
,
239
243
Mimori
Y.
,
Miki-Noumura
T.
(
1994
).
ATP-induced sliding of microtubules on tracks of 22S dynein molecules aligned with the same polarity.
Cell Motil. Cytoskel
27
,
180
191
Mogami
Y.
,
Takahashi
K.
(
1983
).
Calcium and microtubule sliding in ciliary axonemes isolated from Paramecium caudatum.
J. Cell Sci
61
,
107
121
Mori
M.
,
Miki-Noumura
T.
(
1992
).
Inhibition of gliding movement by calcium in doublet microtubules on Tetrahymena ciliary dyneins in vitro.
Exp. Cell Res
203
,
483
487
Paschal
B. M.
,
Vallee
R. B.
(
1987
).
Retrograde transport by the microtubule-associated protein MAP 1C.
Nature
330
,
181
183
Sale
W. S.
(
1986
).
The axonemal axis and Ca2+-induced asymmetry of active microtubule sliding in sea urchin sperm tail.
J. Cell Biol
102
,
2042
2052
Sale
W. S.
,
Satir
P.
(
1977
).
Direction of active sliding of microtubules in Tetrahymena cilia.
Proc. Nat. Acad. Sci. USA
74
,
2045
2049
Schnapp
B. J.
,
Reese
T. S.
(
1989
).
Dynein is the motor for retrograde axonal transport of organelles.
Proc. Nat. Acad. Sci. USA
86
,
1548
1552
Schroer
T. A.
,
Steuer
E. R.
,
Sheetz
M. P.
(
1989
).
Cytoplasmic dynein is a minus end-directed motor for membranous organelles.
Cell
56
,
937
946
Tamm
S. L.
(
1989
).
Control of reactivation and microtubule sliding by calcium, strontium, and barium in detergent-extracted macrocilia of Beroë.
Cell Motil. Cytoskel
12
,
104
112
Vale
R. D.
,
Toyoshima
Y. Y.
(
1988
).
Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia.
Cell
52
,
459
469
Vernon
G. G.
,
Woolley
D. M.
(
1994
).
Direct evidence for tension development between flagellar doublet microtubules.
Exp. Cell Res
215
,
390
394
Walter
M. F.
,
Satir
P.
(
1979
).
Calcium does not inhibit active sliding of microtubules from mussel gill cilia.
Nature
278
,
69
70
Woolley
D. M.
,
Brammall
A.
(
1987
).
Direction of sliding and relative sliding velocities within trypsinized sperm axonemes of Gallus domesticus.
J. Cell Sci
88
,
361
371
This content is only available via PDF.