Experimentally introduced tension on kinetochores and their centromeres has been shown to stabilize kinetochore attachment to microtubules, modify kinetochore directional instability, and regulate cell-cycle progression into anaphase. In mitosis, kinetochore tension and the stretch of centromere chromatin are produced by the movement of sister kinetochores toward opposite poles and astral ejection forces on the chromosome arms. However, newt lung cell kinetochores oscillate between poleward and away from the pole motility states throughout mitosis, indicating kinetochores are not under constant tension. To test whether kinetochores are under net tension while they are oscillating, and how often they are under compression and pushing into the chromosome, we measured the distance between sister kinetochores in newt lung cells using both video-enhanced differential interference contrast microscopy (VE-DIC) and immunofluorescence microscopy. We found that for chromosomes in which sister kinetochores are attached to opposite spindle poles, centromeres are, on average, stretched (2.2 microns in living cells and 1.8 microns in fixed cells) with respect to the inter-kinetochore ‘rest’ length (1.1 microns in living and fixed cells). For chromosomes in which only one kinetochore is attached to the spindle, the centromere chromatin associated with the tethered kinetochore is, on average, stretched to approximately half of the average inter-kinetochore distance measured for chromosomes in which both kinetochores are attached. We conclude that while newt lung cell kinetochores oscillate between states of P and AP movement, they are under tension approximately 90% of the time and under compression less than 6% of the time.

Alexander
S. P.
,
Rieder
C. L.
(
1991
).
Chromosome motion during attachment to the vertebrate spindle: initial saltatory-like behavior ofchromosomes and quantitative analysis of force production by nascent kinetochore fibers.
J. Cell Biol
113
,
805
815
Ault
J. G.
,
Demarco
A. J.
,
Salmon
E. D.
,
Rieder
C. L.
(
1991
).
Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes.
J. Cell Sci
99
,
701
710
Bajer
A.
,
Mole-Bajer
J.
(
1956
).
Cine-micrographic studies on mitosis in endosperm II. Chromosome, cytoplasmic, and brownian movements.
Chromosoma
7
,
558
607
Bajer
A.
(
1982
).
Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis.
J. Cell Biol
93
,
33
48
Campbell
M. S.
,
Gorbsky
G. J.
(
1995
).
Microinjection of mitotic cells with the 3F3/2 anti-phosphoepitope antibody delays the onset of anaphase.
J. Cell Biol
129
,
1195
1204
Cassimeris
L.
,
Rieder
C. L.
,
Salmon
E. D.
(
1994
).
Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: Implications for the mechanism of chromosome congression.
J. Cell Sci
107
,
285
297
Cyert
M. S.
,
Scherson
T.
,
Kirschner
M. W.
(
1988
).
Monoclonal antibodies specific for thiophosphorylated proteins recognizes Xenopus MPF.
Dev. Biol
129
,
209
216
Fuller
M. T.
(
1995
).
Riding the polar winds: chromosomes motor down east.
Cell
81
,
5
8
Gorbsky
G. J.
,
Ricketts
W. A.
(
1993
).
Differential expression of a phosphoepitope at the kinetochores of moving chromosomes.
J. Cell Biol
122
,
1311
1321
Hays
T. S.
,
Salmon
E. D.
(
1990
).
Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules.
J. Cell Biol
110
,
391
404
Li
X.
,
Nicklas
R. B.
(
1995
).
Mitotic forces control a cell-cycle checkpoint.
Nature
373
,
630
632
McNeill
P. A.
,
Berns
M. W.
(
1981
).
Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells.
J. Cell Biol
88
,
543
553
Mitchison
T. J.
,
Salmon
E. D.
(
1992
).
Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis.
J. Cell Biol
119
,
569
582
Mole-Bajer
J.
,
Bajer
A.
,
Owczarzak
A.
(
1975
).
Chromosome movements in prometaphase and aster transport in the newt.
Cytobios
13
,
45
65
Nicklas
R. B.
,
Koch
C. A.
(
1969
).
Chromosome micromanipulation III. Spindle fiber tension and the reorientation of mal-oriented chromosomes.
J. Cell Biol
43
,
40
50
Nicklas
R. B.
(
1988
).
The forces that move chromosomes in mitosis.
Annu. Rev. Biophys. Biophys. Chem
17
,
431
449
Nicklas
R. B.
,
Arana
P.
(
1992
).
Evolution and the meaning of metaphase.
J. Cell Biol
102
,
681
690
Nicklas
R. B.
,
Ward
S. C.
,
Gorbsky
G. J.
(
1995
).
Kinetochore chemistry is sensitive to tension and may link mitotic forces to a cell cycle checkpoint.
J. Cell Biol
130
,
929
939
Pickett-Heaps
J. D.
,
Tippit
D. H.
,
Porter
K. R.
(
1982
).
Rethinking mitosis.
Cell
29
,
729
744
Rieder
C. L.
,
Davison
E. A.
,
Jensen
L. C. W.
,
Cassimeris
L.
,
Salmon
E. D.
(
1986
).
Oscillatory movements of mono-oriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle.
J. Cell Biol
103
,
581
591
Rieder
C. L.
,
Hard
R.
(
1990
).
Newt lung epithelial cells: Cultivation, use, and advantages for biomedical research.
Int. Rev. Cytol
122
,
153
220
Rieder
C. L.
,
Palazzo
R. E.
(
1992
).
Colcemid and the mitotic cycle.
J. Cell Sci
102
,
387
392
Rieder
C. L.
,
Schultz
A.
,
Cole
R.
,
Sluder
G.
(
1994
).
Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle.
J. Cell Biol
127
,
1301
1310
Rieder
C. L.
,
Cole
R. W.
,
Khodjakov
A.
,
Sluder
G.
(
1995
).
The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores.
J. Cell Biol
130
,
941
948
Rieder
C. L.
,
Salmon
E. D.
(
1994
).
Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle.
J. Cell Biol
124
,
223
233
Roos
U. P.
(
1976
).
Light and electron microscopy of rat kangaroo cells in mitosis.
Chromosoma
54
,
363
385
Salmon
E. D.
,
Inoue
T.
,
Desai
A.
,
Murray
A. W.
(
1994
).
High resolution multimode digital imaging system for mitosis studies in vivo and in vitro.
Biol. Bulletin
187
,
231
232
Seto
T.
,
Kezer
J.
,
Pomerat
C. M.
(
1969
).
A cinematographic study of meiosis in salamander spermatocytes in vitro.
Z. Zellforsch
94
,
407
424
Skibbens
R. V.
,
Skeen
V. P.
,
Salmon
E. D.
(
1993
).
Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism.
J. Cell Biol
122
,
859
875
Skibbens
R. V.
,
Rieder
C. L.
,
Salmon
E. D.
(
1995
).
Kinetochore motility after severing between sister centromeres using laser microsurgery: evidence that kinetochore directional instability and position is regulated by tension.
J. Cell Sci
108
,
2537
2548
Vernos
I.
,
Karsenti
E.
(
1996
).
Motors involved in spindle assembly and chromosome segregation.
Curr. Opin. Cell. Biol
8
,
4
9
Waters
J.C.
,
Mitchison
T. J.
,
Rieder
C. L.
,
Salmon
E. D.
(
1996
).
The kinetochore microtubule minus-end disassembly associated with poleward flux produces a force that can do work.
Mol. Biol. Cell
7
,
1547
1558
Wells
W. A. E.
,
Murray
A. W.
(
1996
).
Aberrantly segregating centromeres activate the spindle assembly checkpoint in budding yeast.
J. Cell Biol
133
,
75
84
Wordeman
L.
,
Steuer
E. R.
,
Sheetz
M. P.
,
Mitchison
T.
(
1991
).
Chemical subdomains within the kinetochore domain of isolated CHO mitotic chromosomes.
J. Cell Biol
114
,
285
294
Zirkle
R. E.
(
1970
).
Ultraviolet-microbeam irradiation of newt-cell cytoplasm: spindle destruction, false anaphase, and delay of true anaphase.
Rad. Res
41
,
516
537
This content is only available via PDF.