REFERENCES

Alemany
M.
,
Concord
E.
,
Garin
J.
,
Vinçon
M.
,
Marguerie
G.
,
Gulino
D.
(
1996
).
Sequence 274–368 in the3 subunit of the integrin IIb3 provides a ligand recognition and binding domain for the chain of fibrinogen that is independent of platelet activation.
Blood
87
,
592
601
Anderson
C. M.
,
Zucker
F. H.
,
Steitz
T. A.
(
1979
).
Space-filling models of kinase clefts and conformational changes. Comparison of the surface structures of kinase enzymes implicates closing clefts in their mechanism.
Science
204
,
375
380
Andrieux
A.
,
Rabiet
M.-J.
,
Chapel
A.
,
Concord
E.
,
Marguerie
G.
(
1991
).
A highly conserved region of the Arg-Gly-Asp-binding domain ofthe integrinsubunit is sensitive to stimulation.
J. Biol. Chem
266
,
14202
14207
Back
A. L.
,
Kwok
W. W.
,
Hickstein
D. D.
(
1992
).
Identification of two molecular defects in a child with leukocyte adherence deficiency.
J. Biol. Chem
267
,
5482
5487
Bajt
M. L.
,
Loftus
J. C.
,
Gawaz
M. P.
,
Ginsberg
M. H.
(
1992
).
Characterization of a gain of function mutation of integrinIIb 3 (platelet glycoprotein IIb-IIIa).
J. Biol. Chem
267
,
22211
22216
Bajt
M. L.
,
Goodman
T.
,
McGuire
S. L.
(
1995
).
2 (CD18) mutations abolish ligand recognition by I domain integrins LFA-1 (L2, CD11a/CD18) and Mac-1 (M2, CD11b/CD18).
J. Biol. Chem
270
,
94
98
Bazzoni
G.
,
Shih
D.-T.
,
Buck
C. A.
,
Hemler
M. E.
(
1995
).
Monoclonal antibody 9EG7 defines a novel1 integrin epitope induced by soluble ligand and manganese, but inhibited by calcium.
J. Biol. Chem
270
,
25570
25577
Bergelson
J. M.
,
Hemler
M. E.
(
1995
).
Do integrins use a ‘MIDAS touch’ to grasp an Asp?.
Curr. Biol
5
,
615
617
Bilsland
C. A. G.
,
Diamond
M. S.
,
Springer
T. A.
(
1994
).
The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologoussubunit and localization of a ligand recognition site to the I domain.
J. Immunol
152
,
4582
4589
Calvete
J. J.
,
Mann
K.
,
Alvarez
M. V.
,
Lopez
M. V.
,
Gonález-Rodríguez
J.
(
1992
).
Proteolytic dissection of the isolated fibrinogen receptor, integrin GPIIb/IIIa. Localization of GPIIb and GPIIIa sequences putatively involved in the subunit interface and in intrasubunit and intrachain contacts.
Biochem. J
282
,
523
532
Calvete
J. J.
(
1994
).
Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex.
Thromb. Haemost
72
,
1
15
Calvete
J. J.
,
Mann
K.
,
Schäfer
W.
,
Fernandez-Lafuente
R.
,
Guisán
J. M.
(
1994
).
Proteolytic degradation of the RGD-binding and non-RGD binding conformers of human platelet integrin IIb/IIIa: clues for identification of regions involved in the receptor's activation.
Biochem. J
298
,
1
7
Corbi
A. L.
,
Miller
L. J.
,
O'Connor
K.
,
Larson
R. S.
,
Springer
T. A.
(
1987
).
cDNA cloning and complete primary structure of thesubunit of a leukocyte adhesion protein.
EMBO J
6
,
4023
4028
Davis
G. E.
,
Camarillo
C. W.
(
1993
).
Regulation of integrin-mediated myeloid cell adhesion to fibronectin: influence of disulfide reducing agents, divalent cations and phorbol ester.
J. Immunol
151
,
7138
7150
Diamond
M. S.
,
Springer
T. A.
(
1994
).
The dynamic regulation of integrin adhesiveness.
Curr. Biol
4
,
506
517
Dransfield
I.
,
Cabanas
C.
,
Craig
A.
,
Hogg
N.
(
1992
).
Divalent cation regulation of the function of the leukocyte integrin LFA-1.
J. Cell Biol
116
,
219
226
D'Souza
S. E.
,
Ginsberg
M. H.
,
Burke
T. A.
,
Lam
S. C. T.
,
Plow
E. F.
(
1988
).
Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor.
Science
242
,
91
93
D'Souza
S. E.
,
Ginsberg
M. H.
,
Burke
T. A.
,
Plow
E. F.
(
1990
).
The ligand binding site of the platelet integrin receptor IIb/IIIa is proximal to the second calcium binding domain of itssubunit.
J. Biol. Chem
265
,
3440
3446
D'Souza
S. E.
,
Haas
T. A.
,
Piotrowicz
R. S.
,
Byers-Ward
V.
,
McGrath
D. E.
,
Soule
H. R.
,
Cierniewski
C.
,
Plow
E. F.
,
Smith
J. W.
(
1994
).
Ligand and cation binding are dual functions of a discrete segment of the integrin3 subunit: cation displacement is involved in ligand binding.
Cell
79
,
659
667
Faull
R. J.
,
Ginsberg
M. H.
(
1995
).
Dynamic regulation of integrins.
Stem Cells
13
,
38
46
Hynes
R. O.
(
1992
).
Integrins: versatility, modulation and signalling in cell adhesion.
Cell
69
,
11
25
Humphries
M. J.
(
1990
).
The molecular basis and specificity of integrin-ligand interactions.
J. Cell Sci
97
,
585
592
Irie
A.
,
Kamata
T.
,
Puzon-McLaughlin
W.
,
Takada
Y.
(
1995
).
Critical amino acid residues for ligand binding are clustered around a predictedturn of the third N-terminal repeat in the integrin andsubunits.
EMBO J
14
,
5550
5556
Kamata
T.
,
Takada
Y.
(
1994
).
Direct binding of collagen to the I domain of integrin(VLA-2, CD49b/CD29) in a divalent-cation independent manner.
J. Biol. Chem
269
,
26006
26010
Kamata
T.
,
Puzon
W.
,
Takada
Y.
(
1995
).
Identification of putativeligand-binding sites of integrin (VLA-4, CD49d/CD29).
Biochem. J
305
,
945
951
Kouns
W. C.
,
Hadvary
P.
,
Haering
P.
,
Steiner
B.
(
1992
).
Conformational modulation of purified glycoprotein (GP) IIb-IIIa allows proteolytic generaton of active fragments from either active or inactive GPIIb-IIIa.
J. Biol. Chem
267
,
18844
18851
Kouns
W. C.
,
Steiner
B.
,
Kunicki
T. J.
,
Moog
S.
,
Jutzi
J.
,
Jennings
L. K.
,
Cazenave
J.-P.
,
Lanza
F.
(
1994
).
Activation of the fibrinogen binding site on platelets isolated from a patient with the Strasbourg I variant of Glanzmann's thrombasthenia.
Blood
84
,
1108
1115
Lanza
F.
,
Stierle
A.
,
Fournier
D.
,
Morales
M.
,
Andre
G.
,
Nurden
A. T.
,
Cazenave
J.-P.
(
1992
).
A new variant of Glanzmann's thrombasthenia (Strasbourg I): Platelets with functionally defective GPIIb-IIIa complexes and a 214Arg214Trp mutation.
J. Clin. Invest
89
,
1995
2004
Lee
O.-J.
,
Rieu
P.
,
Arnaout
M. A.
,
Liddington
R.
(
1995
).
Crystal structure of the A-domain from thesubunit of the integrin CR3 (CD11a/CD18).
Cell
80
,
631
638
Lee
O.-J.
,
Bankston
L. A.
,
Arnaout
M. A.
,
Liddington
R.
(
1995
).
Two conformations for the integrin A-domain (I-domain): a pathway for activation?.
Structure
3
,
1333
1340
Loftus
J. C.
,
O'Toole
T. E.
,
Plow
E. F.
,
Glass
A.
,
Frelinger
A. L.
III
,
Ginsberg
M. H.
(
1990
).
A3 integrin mutation abolishes ligand binding and alters a divalent-cation dependent conformation.
Science
249
,
915
918
Loftus
J. C.
,
Halloran
C. E.
,
Ginsberg
M. H.
,
Feigen
L. P.
,
Zablocki
J. A.
,
Smith
J. W.
(
1996
).
The amino-terminal one-third ofIIb defines the ligand specificity of integrin IIb3.
J. Biol Chem
271
,
2033
2039
Masumoto
A.
,
Hemler
M. E.
(
1993
).
Mutation of putative divalent cation sites in the4subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin.
J. Cell Biol
123
,
245
253
Michishita
M.
,
Videm
V.
,
Arnaout
M. A.
(
1993
).
A novel divalent-cation binding site in the A domain of the2 integrin CR3 (CD11b/CD18) is essential for ligand binding.
Cell
72
,
857
867
Monod
J.
,
Wyman
J.
,
Changeux
J.-P.
(
1965
).
On the nature of allosteric transitions: a plausible model.
J. Mol. Biol
12
,
88
118
Mould
A. P.
,
Akiyama
S. K.
,
Humphries
M. J.
(
1995
).
Regulation of integrin-fibronectin interactions by divalent cations. Evidence for distinct classes of binding sites for Mn2+, Mg2+, and Ca2+.
J. Biol Chem
270
,
26270
26277
Mould
A. P.
,
Garratt
A. N.
,
Askari
J. A.
,
Akiyama
S. K.
,
Humphries
M. J.
(
1995
).
Regulation of integrinfunction by anti-integrin antibodies and divalent cations.
Biochem. Soc. Trans
23
,
395
–.
Mould
A. P.
,
Akiyama
S. K.
,
Humphries
M. J.
(
1996
).
The inhibitory anti-1 integrin monoclonal antibody 13 recognises an epitope that is attenuated by ligand occupancy: evidence for allosteric inhibition of integrin function.
J. Biol. Chem
271
,
20365
20374
Muñoz
M.
,
Serrador
J.
,
Sánchez-Madrid
F.
,
Teixido
J.
(
1996
).
A region of the integrin VLA4 subunit involved in homotypic cell aggregation and in fibronectin but not vascular cell adhesion molecule-1 binding.
J. Biol. Chem
271
,
2696
2702
Newham
P.
,
Humphries
M. J.
(
1996
).
Integrin adhesion receptors: structure, function and implications for biomedicine.
Mol. Med. Today
2
,
304
313
Pasqualini
R.
,
Koivunen
E.
,
Ruoslahti
E.
(
1995
).
A peptide isolated from phage display libraries is a structural and functional mimic of an RGD binding site on integrins.
J. Cell Biol
130
,
1189
1196
Perutz
M. F.
(
1989
).
Mechanisms of cooperativity and allosteric regulation of proteins.
Quart. Rev. Biophys
22
,
139
236
Qu
A.
,
Leahy
D. J.
(
1995
).
Crystal structure of the I-domain from the CD11a/CD18 (LFA-1,L 2) integrin.
Proc. Nat. Acad. Sci. USA
92
,
10277
107281
Sastry
S. K.
,
Horwitz
A. F.
(
1993
).
Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra-and intracellular initiated transmembrane signalling.
Curr. Opin. Cell Biol
5
,
819
831
Schiffer
S. G.
,
Hemler
M. E.
,
Lobb
R. R.
,
Tizard
R.
,
Osborn
L.
(
1995
).
Molecular mapping of functional antibody sites ofintegrin.
J. Biol. Chem
270
,
14270
14273
Schwartz
M. A.
,
Schaller
M. D.
,
Ginsberg
M. H.
(
1995
).
Integrins: emerging paradigms of signal transduction.
Annu. Rev. Cell Biol
11
,
549
599
Smith
J. W.
,
Cheresh
D. A.
(
1988
).
The Arg-Gly-Asp binding domain of the vitronectin receptor. Photoaffinity cross linking implicates amino acid residues 61–203 of thesubunit.
J. Biol. Chem
263
,
18726
18731
Smith
J. W.
,
Cheresh
D. A.
(
1990
).
Integrin (V 3)-ligand interaction. Identification of a heterodimeric RGD binding site on the vitronectin receptor.
J. Biol. Chem
265
,
2168
2172
Strynadka
N. C. J.
,
James
M. N. G.
(
1989
).
Crystal structures of the helix-loop-helix calcium binding proteins.
Annu. Rev. Biochem
58
,
951
998
Takada
Y.
,
Ylanne
J.
,
Mandelman
D.
,
Puzon
W.
,
Ginsberg
M. H.
(
1992
).
A point mutation in the integrinsubunit blocks binding of to fibronectin and invasin but not recruitment to adhesion plaques.
J. Cell Biol
119
,
913
921
Takada
Y.
,
Puzon
W.
(
1993
).
Identification of a regulatory region of the integrin1 subunit using activating and inhibiting antibodies.
J. Biol. Chem
268
,
17597
17601
Yednock
T. A.
,
Cannon
C.
,
Vandevert
C.
,
Goldbach
E. G.
,
Shaw
G.
,
Ellis
D. K.
,
Liaw
C.
,
Fritz
L. C.
,
Tanner
L. I.
(
1995
).
integrin-dependent cell adhesion is regulated by a low affinity receptor pool that is conformationally responsive to ligand.
J. Biol. Chem
270
,
28740
28750
This content is only available via PDF.

Article PDF first page preview

Article PDF first page preview