Nanomolar concentrations of native fibronectin and its RGDS-containing cell-binding domain have previously been reported to stimulate fibroblast migration in the transmembrane (or ‘Boyden chamber’) assay; in contrast, the gelatin-binding domain (GBD) of fibronectin has consistently been reported to be devoid of migration-stimulating activity in this assay. We have examined the effects of fibronectin and several of its purified functional domains on the migration of human skin fibroblasts in what is presumably a more physiologically relevant assay involving the movement of cells into a 3-D matrix of native type I collagen fibrils. We report that: (a) femtomolar concentrations of GBD stimulate fibroblast migration into such collagen matrices; and (b) fibronectin, as well as peptides containing all other of its functional domains, do not exhibit migration-stimulating activity when tested in the femtomolar to nanomolar concentration range (i.e. 0.1 pg/ml to 1 microgram/ml). The correct assignment of migration-stimulating activity to GBD, rather than to a contaminant, was confirmed by: (a) the use of several fibronectin and GBD purification protocols; (b) the neutralization of GBD migration-stimulating activity by monoclonal antibodies directed against epitopes present in this domain; (c) the time-dependent generation of migration-stimulating activity by the proteolytic degradation of native fibronectin; and (d) obtaining an identical dose-response curve with a genetically engineered GBD peptide. The cryptic migration-stimulating activity of GBD was not affected by the presence of serum or native fibronectin, but was inhibited by TGF-beta 1. Parallel experiments using the transmembrane assay confirmed that GBD was devoid of migration-stimulating activity in this assay when membranes coated with gelatin were used, but revealed that significant stimulation of migration was achieved with membranes coated with native type I collagen. Cells preincubated with GBD for 24 hours whilst growing on plastic tissue culture dishes and then plated onto native collagen matrices in the absence of further GBD also displayed an elevated migration compared to controls. Taken together, these observations suggest that: (a) the interaction of GBD with a putative cell surface receptor (and not the collagen substratum) initiates a persistent alteration in cell phenotype which is manifest by an increase in migratory activity when these cells are cultured on a native collagen substratum; and (b) GBD may play a hitherto unrecognised role in the control of cell migration in response to the local release of proteases during pathological processes, such as tumour invasion and wound repair.
Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin
S.L. Schor, I. Ellis, C. Dolman, J. Banyard, M.J. Humphries, D.F. Mosher, A.M. Grey, A.P. Mould, J. Sottile, A.M. Schor; Substratum-dependent stimulation of fibroblast migration by the gelatin-binding domain of fibronectin. J Cell Sci 1 October 1996; 109 (10): 2581–2590. doi: https://doi.org/10.1242/jcs.109.10.2581
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. We have a limited number of spaces left so sign up now! Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4491)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4491)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Cell scientist to watch: Gautam Dey

We interviewed Gautam Dey, who became a group leader at EMBL in Heidelberg, Germany, in 2021. His lab investigates the fundamental organisational principles and evolutionary dynamics of the nuclear compartment across eukaryotes.
Mechanisms of eukaryotic transcription termination at a glance

Check out our latest Cell Science at a Glance article and accompanying poster for an overview of the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.