The cellular events causing pathological extracellular matrix (ECM) accumulation in vivo are not well understood. Prolonged serial passage of several cell types in culture leads to increased production of extracellular matrix (ECM) proteins, but the mechanism for these putative fibrotic changes is not known. Here, human fetal glomerular mesangial cells were subjected to serial passage (P) in culture and the expression of ECM proteins, proteases and protease inhibitors was comprehensively evaluated. From P11 through P14, a series of phenotypic changes occurred. Steady-state expression of mRNA for alpha 1 chains of type III and type IV (but not type I) collagen, and for laminin beta 1 and gamma 1, increased 2- to 8-fold, while expression of mRNA for interstitial collagenase (MMP-1) and gelatinase A (MMP-2) virtually ceased. Expression of tissue-type plasminogen activator (tPA) mRNA also decreased markedly. Expression of mRNA for the tissue inhibitor of metalloproteinases (TIMP)-1, and of the smaller of two mRNA species for the PA inhibitor PAI-1, ceased by P14. There was a switch in expression of the two species of TIMP-2 mRNA: whereas the ratio of signal intensity comparing the 3.5 kb mRNA species to the 1.0 kb species was 5:1 up to P11, it was reversed (1:5) at P14 and later. Serial passage also led to changes in protein expression, with increased type IV collagen and laminin, but decreased interstitial collagenase and gelatinase A. The cells showed a progressive increase in staining for type IV collagen. These findings define the appearance of a matrix-accumulating phenotype in later-passage mesangial cells. Matrix expansion in vivo has been associated with increased transforming growth factor (TGF)-beta synthesis; the cells were found to show at least 5-fold increased expression of TGF-beta 1 mRNA from P8 to P16. However, treatment of P9 or P10 cells with graded doses of TGF-beta 1 increased expression of both collagen IV and gelatinase A mRNA and did not alter the ratio of signal intensity for TIMP-2 mRNA species. Thus, assumption of a matrix-accumulating phenotype by these cultured fetal glomerular mesangial cells is not accelerated by exogenous TGF-beta. These data describe an in vitro model of mesangial cell matrix turnover in which matrix accumulation could result from a concerted increase in ECM synthesis and decrease in ECM degradation.
Increased expression of extracellular matrix proteins and decreased expression of matrix proteases after serial passage of glomerular mesangial cells
H.W. Schnaper, J.B. Kopp, A.C. Poncelet, S.C. Hubchak, W.G. Stetler-Stevenson, P.E. Klotman, H.K. Kleinman; Increased expression of extracellular matrix proteins and decreased expression of matrix proteases after serial passage of glomerular mesangial cells. J Cell Sci 1 October 1996; 109 (10): 2521–2528. doi: https://doi.org/10.1242/jcs.109.10.2521
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. We have a limited number of spaces left so sign up now! Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4491)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4491)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Cell scientist to watch: Gautam Dey

We interviewed Gautam Dey, who became a group leader at EMBL in Heidelberg, Germany, in 2021. His lab investigates the fundamental organisational principles and evolutionary dynamics of the nuclear compartment across eukaryotes.
Mechanisms of eukaryotic transcription termination at a glance

Check out our latest Cell Science at a Glance article and accompanying poster for an overview of the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.