We propose the use of membrane splitting by freeze-fracture for differential phospholipid analysis of protoplasmic and exoplasmic membrane leaflets (halves). Unfixed cells or tissues are quick-frozen, freeze-fractured, and platinum-carbon (Pt/C) shadowed. The Pt/C replicas are then treated with 2.5% sodium dodecyl sulfate (SDS) to solubilize unfractured membranes and to release cytoplasm or contents. While the detergent dissolves unfractured membranes, it would not extract lipids from split membranes, as their apolar domains are stabilized by their Pt/C replicas. After washing, the Pt/C replicas, along with attached protoplasmic and exoplasmic membrane halves, are processed for immunocytochemical labeling of phospholipids with antibody, followed by electron microscopic observation. Here, we present the application of the SDS-digested freeze-fracture replica labeling (SDS-FRL) technique to the transmembrane distribution of a major membrane phospholipid, phosphatidylcholine (PC), in various cell and intracellular membranes. Immunogold labeling revealed that PC is exclusively localized on the exoplasmic membrane halves of the plasma membranes, and the intracellular membranes of various organelles, e.g. nuclei, mitochondria, endoplasmic reticulum, secretory granules, and disc membranes of photoreceptor cells. One exception to this general scheme was the plasma membrane forming the myelin sheath of neurons and the Ca(2+)-treated erythrocyte membranes. In these cell membranes, roughly equal amounts of immunogold particles for PC were seen on each outer and inner membrane half, implying a symmetrical transmembrane distribution of PC. Initial screening suggests that the SDS-FRL technique allows in situ analysis of the transmembrane distribution of membrane lipids, and at the same time opens up the possibility of labeling membranes such as intracellular membranes not normally accessible to cytochemical labels without the distortion potentially associated with membrane isolation procedures.
Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling
K. Fujimoto, M. Umeda, T. Fujimoto; Transmembrane phospholipid distribution revealed by freeze-fracture replica labeling. J Cell Sci 1 October 1996; 109 (10): 2453–2460. doi: https://doi.org/10.1242/jcs.109.10.2453
Download citation file:
Advertisement
Cited by
JCS Journal Meeting 2023: Imaging Cell Dynamics

Our 2023 Journal Meeting on ‘Imaging Cell Dynamics’ will be held from 14-17 May 2023 in Lisbon, Portugal. We have a limited number of spaces left so sign up now! Registration deadline: 31 March.
Call for papers: Cell and Tissue Polarity
-PolarityCFP.png?versionId=4491)
We are welcoming submissions for our next special issue, which will focus on ‘Cell and tissue polarity’ and will be guest edited by David Bryant. Submission deadline: 15 July.
Webinar: Increasing the visibility and impact of your research
-HUBSwebinar.jpg?versionId=4491)
Would you like to increase the visibility and impact of your research and raise your profile internationally? If so, register for the very practical webinar we are running in association with HUBS on 23 February 2023.
Cell scientist to watch: Gautam Dey

We interviewed Gautam Dey, who became a group leader at EMBL in Heidelberg, Germany, in 2021. His lab investigates the fundamental organisational principles and evolutionary dynamics of the nuclear compartment across eukaryotes.
Mechanisms of eukaryotic transcription termination at a glance

Check out our latest Cell Science at a Glance article and accompanying poster for an overview of the current understanding about the mechanisms of transcription termination by the three eukaryotic RNAPs.