Previous measurements of the lateral electric fields near skin wounds in guinea pigs have detected DC fields between 100–200 mV/mm near the edge of the wound. We have studied the translocation response of motile primary human keratinocytes migrating on a collagen substrate while exposed to similar physiological DC electric fields. We find that keratinocytes migrate randomly on collagen in fields of 5 mV/mm or less, but in larger fields they migrate towards the negative pole of the field, exhibiting galvanotaxis. Since these cells have an average cell length of 50 microns, this implies that they are able to detect a voltage gradient as low as 0.5 mV along their length. This cath-odally-directed movement exhibits increased directedness with increasing field strengths between 10 and 100 mV/mm. We observe a maximally directed response at 100 mV/mm with half of the cells responding to the field within 14 minutes. The average speed of migration tended to be greater in fields above 50 mV/mm than in smaller fields. We conclude that human keratinocytes migrate towards the negative pole in DC electric fields that are of the same magnitude as measured in vivo near wounds in mammalian skin.

Barker
A. T.
,
Jaffe
L. F.
,
Vanable
J. W.
Jr.
(
1982
).
The glabrous epidermis of cavies contains a powerful battery.
Am. J. Physiol
242
,
358
–.
Brown
M. J.
,
Loew
L. M.
(
1994
).
Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent.
J. Cell Biol
127
,
117
128
Chiang
M.
,
Cragoe
E. J.
Jr.
,
Vanable
J. W.
Jr.
(
1991
).
Intrinsic electric fields promote epithelialization of wounds in the newt, Notophthalmus viridescens.
Dev. Biol
146
,
377
385
Chiang
M.
,
Robinson
K. R.
,
Vanable
J. W.
Jr.
(
1992
).
Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye.
Exp. Eye. Res
54
,
999
1003
Cooper
M. S.
,
Keller
R. E.
(
1984
).
Perpendicular orientation and directional migration of amphibian neural crest cells in DC electrical fields.
Proc. Natl. Acad. Sci. USA
81
,
160
164
Cooper
M. S.
,
Schliwa
M.
(
1985
).
Electrical and ionic controls of tissue cell locomotion in direct current electric fields.
J. Neurosci. Res
13
,
223
244
Erickson
C. A.
,
Nuccitelli
R.
(
1984
).
Embryonic fibroblast motility and orientation can be influenced by physiological electric fields.
J. Cell Biol
98
,
296
307
Ferrier
J.
,
Ross
S. M.
,
Kenehisa
J.
,
Aubon
J. E.
(
1986
).
Osteoclasts and osteoblasts migrate in opposite direction in response to a constant electrical field.
J. Cell Physiol
129
,
283
288
Franke
K.
,
Gruler
H.
(
1990
).
Galvanotaxis of human granulocytes: Electric field jump studies.
Eur. Biophys. J
18
,
335
346
Franke
K.
,
Gruler
H.
(
1994
).
Directed cell movement in pulsed electric fields.
Z. Naturforsch
49
,
241
249
Gentzkow
G. D.
(
1993
).
Electrical stimulation to heal dermal wounds.
J. Dermatol. Surg. Oncol
19
,
753
758
Gruler
H.
(
1993
).
Directed cell movement: A biophysical analysis.
Blood Cells
19
,
91
113
Hinkle
L.
,
McCaig
C. D.
,
Robinson
K. R.
(
1981
).
The direction of growth of differentiating neurons and myoblasts from frog Xenopus-laevis embryos in an applied electric field.
J. Physiol
314
,
121
136
Illingworth
C. M.
,
Barker
A. T.
(
1980
).
Measurement of electrical currents emerging during the regeneration of amputated fingertips in children.
Clin. Phys. Physiol. Meas
1
,
87
89
Jaffe
L. F.
(
1977
).
Electrophoresis along cell membranes.
Nature
265
,
600
602
Jaffe
L. F.
,
Nuccitelli
R.
(
1977
).
Electrical controls of development.
Annu. Rev. Biophys. Bioeng
6
,
445
476
Luther
P. W.
,
Peng
H. B.
,
Lin
J. J.-C.
(
1983
).
Changes in cell shape and actin distribution induced by constant electric fields.
Nature
303
,
61
64
McLaughlin
S.
,
Poo
M.-M.
(
1981
).
The role of electro-osmosis in the electric field-induced movement of charged macromolecules on the surfaces of cells.
Biophys. J
34
,
85
93
Nuccitelli
R.
(
1988
).
Physiological electric fields can influence cell motility, growth and polarity.
Advan. Cell Biol
2
,
213
233
Nuccitelli
R.
,
Smart
T.
(
1989
).
Extracellular calcium levels strongly influence neural crest cell galvanotaxis.
Biol. Bull
176
,
130
135
Orida
N.
,
Poo
M.-M.
(
1978
).
Electrophoretic movement and localization of acetylcholine receptors in the embryonic muscle cell membrane.
Nature
275
,
31
35
Pittelkow
M. R.
,
Scott
R. E.
(
1986
).
New techniques for the in vitro culture of human skin keratinocytes and perspectives on their use for grafting of patients with extensive burns.
Dev. Biol
163
,
162
174
Poo
M.-M.
,
Robinson
K. R.
(
1977
).
Electrophoresis of concanavalin A receptors along embryonic muscle cell membrane.
Nature
265
,
602
605
Poo
M.-M.
(
1981
).
In situ electrophoresis of membrane components.
Annu. Rev. Biophys. Bioeng
10
,
245
276
Rheinwald
J.
,
Green
H.
(
1975
).
Serial cultivation of strains of human epidermal keratinocytes: The formation of keratinizing colonies from single cells.
Cell
6
,
331
344
Robinson
K. R.
(
1985
).
The responses of cells to electrical fields: A review.
J. Cell Biol
101
,
2023
2027
Stump
R. F.
,
Robinson
K. R.
(
1983
).
Xenopus neural crest migration in an applied electrical field.
J. Cell Biol
97
,
1226
1233
Woodley
D. T.
,
Chen
J. D.
,
Kim
J. P.
,
Sarret
Y.
,
Iwasaki
T.
,
Kim
Y. H.
,
O'Keefe
E. J.
(
1993
).
Re-epithelialization, human keratinocyte locomotion.
Dermatol. Clin
11
,
641
646
This content is only available via PDF.