Cell-to-cell channels composed of connexin44 and connexin50 were purified from plasma membranes of calf and fetal bovine lenses. The channels were treated with the nonionic detergents octyl-beta-D-glucopyranoside and decyl-beta-D-maltopyranoside, and the channel/detergent complexes purified by ion and gel filtration column chromatography. In negative staining, the channels appeared as annuli 11 +/- 0.6 nm (s.d., n = 105) in diameter and as 16 +/- 0.8 nm (s.d., n = 96) long particles which corresponded to top and side views of ‘complete’ cell-to-cell channels. The purified cell-to-cell channels were composed principally of a protein, called MP70, that appeared as a diffuse 55–75 kDa band in SDS-PAGE. Dephosphorylation with alkaline phosphatase transformed the diffuse 55–75 kDa band into two distinct bands of almost equal intensity. Immunoblotting showed the bands to be connexin44 and connexin50, respectively. The antibodies also recognized weaker bands composed of the unphosphorylated form of both connexins. The connexins appear to be processed independently ‘in vivo’. The unphosphorylated form of connexin50 was present in channels and membranes from fetal, calf and adult bovine lenses, while unphosphorylated connexin44 only in channels purified from fetal lenses. Therefore, lens cell-to-cell channels are composed principally of equal amounts of phosphorylated connexins 44 and 50 that appear to be assembled in the same channel (‘hybrid’).

REFERENCES

Barrio
L. C.
,
Suchyna
T.
,
Bargiello
T.
,
Xu
L. X.
,
Roginski
R. S.
,
Bennet
M. V. L.
,
Nicholson
B. J.
(
1991
).
Gap junctions formed by connexins 26 and 32 alone and in combinations are differently affected by applied voltage.
Proc. Nat. Acad. Sci. USA
88
,
8410
8414
Bok
D.
,
Dockstader
J.
,
Horwitz
J.
(
1982
).
Immunocytochemical localization of the lens main intrinsic protein (MIP26) in communicating junctions.
J. Cell Biol
92
,
213
220
Burt
J. M.
,
Spray
D. C.
(
1988
).
Inotropic agents modulate gap junction conductance between cardiac myocytes.
Am. J. Physiol
254
,
1206
–.
Costello
M. J.
,
McIntosh
T. J.
,
Robertson
J. D.
(
1985
).
Membrane specializations in mammalian lens fiber cells: Distribution of square arrays.
Curr. Eye Res
4
,
1183
1201
Ehring
G.
,
Zampighi
G.
,
Horwitz
J.
,
Bok
D.
,
Hall
J. E.
(
1990
).
Properties of channels reconstituted from the major intrinsic protein of lens fiber membranes.
J. Gen. Physiol
96
,
631
664
Ehring
G.
,
Lagos
N.
,
Zampighi
G.
,
Hall
J. E.
(
1991
).
Phosphorylation modulates the voltage dependance of channels reconstituted from the major intrinsic protein of lens fiber membranes.
J. Membr. Biol
126
,
75
88
Gruijters
W. T. M.
,
Kistler
J.
,
Bullivan
S.
,
Goodenough
D. A.
(
1987
).
Immunolocalization of MP70 in lens fiber 16–17 nm intercellular junctions.
J. Cell Biol
104
,
562
572
Gupta
V. K.
,
Berthoud
V. M.
,
Atal
N.
,
Jarillo
J. A.
,
Barrio
L. C.
,
Beyer
E. C.
(
1994
).
Bovine connexin44, a lens gap junction protein: molecular cloning, immunologic characterization, and functional expression.
Invest. Ophthalmol. Vis. Sci
35
,
3747
3758
Jarvis
L.
,
Kumar
N. M.
,
Louis
C. F.
(
1993
).
The developmental expression of three mammalian lens fiber cell membrane proteins.
Invest. Ophthalmol. Vis. Sci
34
,
613
620
Jiang
J. X.
,
Paul
D. L.
,
Goodenough
D. A.
(
1993
).
Posttranslational phosphorylation of lens fiber connexin 46: A slow occurrence.
Invest. Ophthalmol. Vis. Sci
34
,
3558
3565
Kistler
J.
,
Kirkeland
B.
,
Bullivant
S.
(
1985
).
Identification of a 70,000-D protein in lens membrane junctional domains.
J. Cell Biol
101
,
28
35
Kistler
J.
,
Bullivant
S.
(
1988
).
Dissociation of lens fibre gap junctions releases MP70.
J. Cell Sci
91
,
415
421
Kistler
J.
,
Christie
D.
,
Bullivant
S.
(
1988
).
Homologies between gap junction proteins in lens, heart and liver.
Nature
331
,
721
723
Kistler
J.
,
Schaller
J.
,
Sigrist
H.
(
1990
).
Mp38 contains the membrane embedded domain of the lens fiber gap junction protein MP70.
J. Biol. Chem
265
,
13357
13361
Kistler
J.
,
Bond
J.
,
Donalson
P.
,
Engel
A.
(
1993
).
Two distict levels of gap junction assembly in vitro.
J. Struct. Biol
110
,
28
38
Kuraoka
A.
,
Iida
H.
,
Hatae
T.
,
Shibata
Y.
,
Itoh
M.
,
Kurita
T.
(
1993
).
Localization of gap junction proteins, connexins 32 and 26, in rat and guinea pig liver as revealed by quick-freeze, deep-etch immunoelectron microscopy.
J. Histochem. Cytochem
41
,
971
980
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Lo
W. K.
,
Harding
C. V.
(
1984
).
Square arrays and their role in ridge formation in human lens fibers.
J. Ultrastruct. Res
86
,
228
254
Lowry
O. H.
,
Rosebrough
N. J.
,
Farr
A. L.
,
Randall
R. J.
(
1951
).
Protein measurment with the folin phenol reagent.
J. Biol. Chem
193
,
265
275
Musil
L. S.
,
Cunningham
B. A.
,
Edelman
G. M.
,
Goodenough
D. A.
(
1990
).
Differential phosphorylation of the gap junction protein connexin43 in junctional communication-competent and-deficient cell lines.
J. Cell Biol
111
,
2077
2088
Nicholson
B.
,
Dermietzel
R.
,
Teplow
D.
,
Traub
O.
,
Willecke
K.
,
Revel
J. P.
(
1987
).
Two homologous protein components of hepatic gap junctions.
Nature
329
,
732
734
Paul
D. L.
,
Ebihara
L.
,
Takemoto
L. J.
,
Swenson
K. I.
,
Goodenough
D. A.
(
1991
).
Connexin46, a novel lens gap junction protein, induces voltage-gated currents in nonjunctional plasma membranes of Xenopus oocytes.
J. Cell Biol
115
,
1077
1089
Peracchia
C.
,
Peracchia
L. L.
(
1980
).
Gap junction dynamics: Reversible effects of divalent cations.
J. Cell Biol
87
,
708
718
Revel
J. P.
,
Karnovsky
J. J.
(
1976
).
Hexagonal array of subunits in intercellular junctions of the mouse heart and liver.
J. Cell Biol
33
,
7
–.
Rubin
J. B.
,
Versalis
V. K.
,
Bennett
M. V. L.
,
Bargiello
T. A.
(
1992
).
Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexin 26 and 32.
Biophys. J
62
,
183
195
Rup
D. M.
,
Veenstra
R. D.
,
Wang
H. Z.
,
Brink
P. R.
,
Beyer
E. C.
(
1993
).
Chick connexin56, a novel gap junction protein.
J. Biol. Chem
268
,
706
712
Saez
J. C.
,
Spray
D. C.
,
Nairn
A. C.
,
Hertzberg
E. L.
,
Greengard
P.
,
Bennett
M. V. L.
(
1986
).
cAMP increases junctional conductance ans stimulates phosphorylation of the 27-kDa principal gap junction polypeptide.
Proc. Nat. Acad. Sci. USA
83
,
2473
2477
Stauffer
K. A.
,
Kumar
N. M.
,
Gilula
N. B.
,
Unwin
N.
(
1991
).
Isolation and purification of gap junction channels.
J. Cell Biol
115
,
141
150
Swenson
K. I.
,
Jordan
J. R.
,
Beyer
E. C.
,
Paul
D. L.
(
1989
).
Formation of gap junctions by expression of connexins in Xenopus oocyte pairs.
Cell
57
,
145
155
TenBroek
E.
,
Arneson
M.
,
Jarvis
L.
,
Louis
C. F.
(
1992
).
The distribution of the fiber cell intrinsic membrane proteins MP20 and connexin46 in the bovine lens.
J. Cell Sci
103
,
245
257
TenBroek
E.
,
Johnson
R.
,
Louis
C.
(
1994
).
Cell-to-cell communicationin a differentiating ovine lens culture system.
Invest. Ophthalmol. Vis. Sci
35
,
215
228
Towbin
H.
,
Staehelin
T.
,
Gordon
J.
(
1979
).
Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications.
Proc. Nat. Acad. Sci. USA
76
,
4350
4354
Traub
O.
,
Look
J.
,
Dertmietzel
R.
,
Bruemmer
F.
,
Huelser
D.
,
Willecke
K.
(
1989
).
Comparative characterization of the 21-kDa and 26-kDa gap junction proteins in murine liver and cultured hepatocytes.
J. Cell Biol
108
,
1039
1051
Unwin
P. N. T.
,
Zampighi
G.
(
1980
).
Structure of the junction between communicating cells.
Nature
283
,
545
549
Unwin
P. N. T.
,
Ennis
P. D.
(
1984
).
Two configurations of a channel-forming membrane protein.
Nature
307
,
609
613
Werner
R. E.
,
Levine
E.
,
Rabadan-Diehl
C.
,
Dahl
G.
(
1989
).
Formation of hybrid cell-cell channels.
Proc. Nat. Acad. Sci USA
86
,
5380
5384
White
T. W.
,
Bruzzone
R.
,
Goodenough
D. A.
,
Paul
D. L.
(
1992
).
Mouse Cx50, a functional member of the connexin family of gap junction proteins, is the lens fiber protein MP70.
Mol. Biol. Cell
3
,
711
720
Zampighi
G.
,
Simon
S. A.
,
Robertson
J. D.
,
McIntosh
T. J.
,
Costello
M. J.
(
1982
).
On the structural organization of isolated bovine lens fiber junctions.
J. Cell Biol
93
,
175
189
Zampighi
G. A.
,
Hall
J. E.
,
Ehring
G. R.
,
Simon
S. A.
(
1989
).
The structural organization and protein composition of lens fiber junctions.
J. Cell Biol
108
,
2255
2275
Zampighi
G. A.
,
Hall
J. E.
,
Simon
S. A.
(
1992
).
The specialized junctions of the lens.
Int. Rev. Cytol
136
,
185
225
Zhang
J. T.
,
Nicholson
B.
(
1989
).
Sequence and tissue distribution of a second hepatic gap junction, CX26, as deduced from its cDNA.
J. Cell Biol
109
,
3391
3401
This content is only available via PDF.