There is controversy concerning the source of new microtubules required for the development of neuronal axons. We have proposed that microtubules are released from the centrosome within the cell body of the neuron and are then translocated into the axon to support its growth. To investigate this possibility, we have developed an experimental regime that permits us to determine the fate of a small population of microtubules nucleated at the neuronal centrosome. Microtubules within cultured sympathetic neurons were depolymerized with the anti-microtubule drug nocodazole, after which the drug was removed. Microtubules rapidly and specifically reassembled from the centrosome within three minutes of nocodazole removal. At this point, low levels of vinblastine, another anti-microtubule drug, were added to the culture to inhibit further microtubule assembly while not substantially depolymerizing the small population of microtubules that had already assembled at the centrosome. Within minutes, released microtubules were apparent in the cytoplasm, and many of these had already translocated to the cell periphery by ten minutes. By one hour, virtually all of the microtubules had been released from the centrosome and were concentrated at the cell periphery. With increasing time, these microtubules appeared within and progressively farther down developing axons. Nonneuronal cells within the culture also reassembled microtubules at the centrosome, but only a small portion of these microtubules were released. These observations indicate that microtubules were released from the neuronal centrosome and transported into growing axons, and that microtubule release and relocation from the centrosome are especially active in neurons compared to nonneuronal cells.

REFERENCES

Ahmad
F. J.
,
Joshi
H. C.
,
Centonze
V. E.
,
Baas
P. W.
(
1994
).
Inhibition of microtubule nucleation at the neuronal centrosome compromises axon growth.
Neuron
12
,
271
280
Baas
P. W.
,
Deitch
J. S.
,
Black
M. M.
,
Banker
G. A.
(
1988
).
Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite.
Proc. Nat. Acad. Sci. USA
85
,
8335
8339
Baas
P. W.
,
Slaughter
T.
,
Brown
A.
,
Black
M. M.
(
1991
).
Microtubule dynamics in axons and dendrites.
J. Neurosci. Res
30
,
134
153
Baas
P. W.
,
Ahmad
F. J.
(
1992
).
The plus ends of stable microtubules are the exclusive nucleating structures for microtubules in the axon.
J. Cell Biol
116
,
1231
1241
Baas
P. W.
,
Joshi
H. C.
(
1992
).
Gamma-tubulin distribution in the neuron: implications for the origins of neuritic microtubules.
J. Cell Biol
119
,
171
178
Baas
P. W.
,
Ahmad
F. J.
(
1993
).
The transport properties of axonal microtubules establish their polarity orientation.
J. Cell Biol
120
,
1427
1437
Baas
P. W.
,
Pienkowski
T. P.
,
Cimbalnik
K. A.
,
Toyama
K.
,
Bakalis
S.
,
Ahmad
F. J.
,
Kosik
K. S.
(
1994
).
Tau confers drug stability but not cold stability to microtubules in living cells.
J. Cell Sci
107
,
135
143
Bamburg
J. R.
,
Bray
D.
,
Chapman
K.
(
1986
).
Assembly of microtubules at the tip of growing axons.
Nature
321
,
788
790
Belmont
L. D.
,
Hyman
A. A.
,
Sawin
K. E.
,
Mitchison
T. J.
(
1990
).
Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts.
Cell
62
,
579
589
Black
M. M.
,
Lasek
R. J.
(
1980
).
Slow components of axonal transport: two cytoskeletal networks.
J. Cell Biol
86
,
616
623
Black
M. M.
,
Keyser
P.
,
Sobel
E.
(
1986
).
Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons.
J. Neurosci
6
,
1004
1012
Brady
S. T.
,
Lasek
R. J.
(
1982
).
Axonal transport: a cell biological method for studying proteins which associate with the cytoskeleton.
Meth. Cell Biol
25
,
365
398
Bray
D.
,
Bunge
M. B.
(
1981
).
Serial analysis of microtubules of cultured rat sensory neurons.
J. Neurocytol
10
,
589
605
Brinkley
B. R.
(
1985
).
Microtubule organizing centers.
Annu. Rev. Cell Biol
1
,
145
172
Brinkley
B. R.
,
Cox
S. M.
,
Pepper
D. A.
,
Wible
L.
,
Brenner
S. L.
,
Pardue
R. L.
(
1981
).
Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells.
J. Cell Biol
90
,
557
562
Centonze
V. E.
,
Borisy
G. G.
(
1990
).
Nucleation of microtubules from mitotic centrosomes is modulated by a phosphorylated epitope.
J. Cell Sci
95
,
405
412
Cleveland
D. W.
(
1988
).
Autoregulated instability of tubulin mRNAs: a novel eukaryotic regulatory mechanism.
Trends Biochem. Sci
13
,
339
343
Euteneuer
U.
,
McIntosh
J. R.
(
1981
).
Structural polarity of kinetochore microtubules in PTK2 cells.
J. Cell Biol
98
,
338
345
Evans
L.
,
Mitchison
T.
,
Kirschner
M.
(
1985
).
Influence of the centrosome on the structure of nucleated microtubules.
J. Cell Biol
100
,
1185
1191
Heidemann
S. R.
,
Landers
J. M.
,
Hamborg
M. A.
(
1981
).
Polarity orientation of axonal microtubules.
J. Cell Biol
91
,
661
665
Hoffman
P.
,
Lasek
R. J.
(
1975
).
The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons.
J. Cell Biol
66
,
351
366
Jordan
M. A.
,
Thrower
D.
,
Wilson
L.
(
1991
).
Mechanism of inhibition of cell proliferation by Vinca alkaloids.
Cancer Res
51
,
2212
2222
Jordan
M. A.
,
Thrower
D.
,
Wilson
L.
(
1992
).
Effect of vinblastine, podophyllotoxin and nocodazole on mitotic spindles: implications for the role of microtubule dynamics in mitosis.
J. Cell Sci
102
,
402
416
Joshi
H. C.
,
Baas
P. W.
(
1993
).
A new perspective on microtubules and axon growth.
J. Cell Biol
121
,
1191
1196
Kellog
D. R.
,
Moritz
M.
,
Alberts
B. M.
(
1994
).
The centrosome and cellular organization.
Annu. Rev. Biochem
63
,
639
674
Kirschner
M.
,
Mitchison
T. J.
(
1986
).
Beyond self-assembly: from microtubules to morphogenesis.
Cell
45
,
329
342
Kitanishi-Yumura
T.
,
Fukui
Y.
(
1987
).
Reorganization of microtubules during mitosis in Dictyostelium: dissociation from MTOC and selective assembly/disassembly in situ.
Cell Motil. Cytoskel
8
,
106
117
Lyser
K. M.
(
1964
).
Early differentiation of motor neuroblasts in the chick embryo as studied by electron microscopy. I. General aspects.
Dev. Biol
10
,
433
466
Lyser
K. M.
(
1968
).
An electron microscopic study of centrioles of differentiating neuroblasts.
J. Embryol. Exp. Morphol
20
,
343
354
McNally
F. J.
,
Vale
R. D.
(
1993
).
Identification of katanin, an ATPase that severs and disassembles stable microtubules.
Cell
75
,
419
429
McBeath
E.
,
Fujiwara
K.
(
1990
).
Microtubule detachment from the microtubule-organizing center as a key event in the complete turnover of microtubules in cells.
Eur. J. Cell Biol
52
,
1
16
Robson
S. J.
,
Burgoyne
R. D.
(
1988
).
Differential levels of tyrosinated, detyrosinated, and acetylated alpha-tubulins in neurites and growth cones of dorsal-root ganglion neurons.
Cell Motil. Cytoskel
12
,
273
282
Sanders
M. A.
,
Salisbury
J. L.
(
1989
).
Centrin mediated microtubule severing during flagellar excision in Chlamydomonas reinhardii.
J. Cell Biol
108
,
1751
1760
Sharp
G. A.
,
Weber
K.
,
Osborn
M.
(
1982
).
Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurons.
Eur. J. Cell Biol
29
,
97
103
Tanaka
E.
,
Ho
T.
,
Kirschner
M. W.
(
1995
).
The role of microtubule dynamics in growth cone motility and axonal growth.
J. Cell Biol
128
,
139
155
Tilney
L. G.
,
Bryan
J.
,
Bush
D. J.
,
Fujiwara
K.
,
Mooseker
M. S.
,
Murphy
D. B.
,
Snyder
D. H.
(
1973
).
Microtubules: evidence for 13 protofilaments.
J. Cell Biol
59
,
267
275
Yu
W.
,
Centonze
V. E.
,
Ahmad
F. J.
,
Baas
P. W.
(
1993
).
Microtubule nucleation and release from the neuronal centrosome.
J. Cell Biol
122
,
349
359
Yu
W.
,
Baas
P. W.
(
1994
).
Changes in microtubule number and length during axon differentiation.
J. Neurosci
14
,
2818
2829
Zheng
J.
,
Buxbaum
R. E.
,
Heidemann
S. R.
(
1993
).
Investigation of microtubule assembly and organization accompanying tension-induced neurite initiation.
J. Cell Sci
104
,
1239
1250
This content is only available via PDF.