During mitosis in vertebrate somatic cells, the single attached kinetochore on a mono-oriented chromosome exhibits directional instability: abruptly and independently switching between constant velocity poleward and away from the pole motility states. When the non-attached sister becomes attached to the spindle (chromosome bi-orientation), the motility of the sister kinetochores becomes highly coordinated, one moving poleward while the other moves away from the pole, allowing chromosomes to congress to the spindle equator. In our kinetochore-tensiometer model, we hypothesized that this coordinated behavior is regulated by tension across the centromere produced by kinetochore movement relative to the sister kinetochore and bulk of the chromosome arms. To test this model, we severed or severely weakened the centromeric chromatin between sister kinetochores on bi-oriented newt lung cell chromosomes with a laser microbeam. This procedure converted a pair of tightly linked sister kinetochores into two mono-oriented single kinetochore-chromatin fragments that were tethered to their chromosome arms by thin compliant chromatin strands. These single kinetochore-chromatin fragments moved substantial distances off the metaphase plate, stretching their chromatin strands, before the durations of poleward and away from the pole movement again became similar. In contrast, the severed arms remained at or moved closer to the spindle equator. The poleward and away from the pole velocities of single kinetochore-chromatin fragments in prometaphase were typical of velocities exhibited by sister kinetochores on intact chromosomes from prometaphase through midanaphase A. However, severing the chromatin between sister kinetochores uncoupled the normally coordinated motility of sister kinetochores. Laser ablation also uncoupled the motilities of the single kinetochore fragments from the bulk of the arms. These results reveal that kinetochore directional instability is a fundamental property of the kinetochore and that the motilities of sister kinetochores are coordinated during congression by a stiff centromere linkage. We conclude that kinetochores act as tensiometers that sense centromere tension generated by differential movement of sister kinetochores and their chromosome arms to control switching between constant velocity P and AP motility states.

Ault
J. G.
,
Demarco
A. J.
,
Salmon
E. D.
,
Rieder
C. L.
(
1991
).
Studies on the ejection properties of asters: astral microtubule turnover influences the oscillatory behavior and positioning of mono-oriented chromosomes.
J. Cell Sci
99
,
701
710
Bajer
A. S.
(
1982
).
Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis.
J. Cell Biol
93
,
33
48
Brenner
S. L.
,
Laiw
L.-H.
,
Berns
M. W.
(
1980
).
Laser microirradiation of kinetochores in mitotic PtK2 Cells.
Cell Biophys
2
,
139
151
Cassimeris
L.
,
Rieder
C. L.
,
Rupp
G.
,
Salmon
E. D.
(
1990
).
Stability of microtubule attachment to metaphase kinetochores in PtK1 cells.
J. Cell Sci
96
,
9
15
Cassimeris
L.
,
Rieder
C. L.
,
Salmon
E. D.
(
1994
).
Microtubule assembly and kinetochore directional instability in vertebrate monopolar spindles: Implications for the mechanism of chromosome congression.
J. Cell Sci
107
,
285
297
Coue
M.
,
Lombillo
V. A.
,
McIntosh
J. R.
(
1991
).
Microtubule depolymerization promotes particle and chromosome movement in vitro.
J. Cell Biol
112
,
1165
1175
Davis
A.
,
Sage
C. R.
,
Dougherty
C.
,
Farrell
K. W.
(
1994
).
Microtubule dynamics modulated by guanine triphosphate hydrolysis activity of B tubulin.
Science
264
,
839
842
Gorbsky
G. J.
,
Borisy
G. G.
(
1989
).
Microtubules of the kinetochore fiber turn over in metaphase but not anaphase.
J. Cell Biol
109
,
653
662
Gorbsky
G. H.
,
Ricketts
W. A.
(
1993
).
Differential expression of a phosphoepitope at the kinetochores of moving chromosomes.
J. Cell Biol
122
,
1311
1321
Hays
T. S.
,
Salmon
E. D.
(
1990
).
Poleward force at the kinetochore in metaphase depends on the number of kinetochore microtubules.
J. Cell Biol
110
,
391
404
Holloway
S. L.
,
Glotzer
M.
,
King
R. W.
,
Murray
A. W.
(
1993
).
Anaphase is initiated by proteolysis rather than by the inactivation of maturation-promoting factor.
Cell
73
,
1393
1402
Hoyt
M. A.
,
Totis
L.
,
Roberts
B. T.
(
1991
).
S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function.
Cell
66
,
507
517
Hudspeth
A. J.
,
Gillespie
P. G.
(
1994
).
Pulling springs to tune transduction: adaptation by hair cells.
Neuron
12
,
1
9
Koshland
D. E.
,
Mitchison
T. J.
,
Kirschner
M. W.
(
1988
).
Polewards chromosome movement driven by microtubule depolymerization in vitro.
Nature
331
,
499
504
Li
R.
,
Murray
A. W.
(
1991
).
Feedback control of mitosis in bidding yeast.
Cell
66
,
519
531
Li
X.
,
Nicklas
R. B.
(
1995
).
Mitotic forces control a cell-cycle checkpoint.
Nature
373
,
630
632
McNeill
P. A.
,
Berns
M. W.
(
1981
).
Chromosome behavior after laser microirradiation of a single kinetochore in mitotic PtK2 cells.
J. Cell Biol
88
,
543
553
Mitchison
T. J.
,
Evans
L.
,
Schulze
A.
,
Kirschner
M.
(
1986
).
Sites of microtubule assembly and disassembly in the mitotic spindle.
Cell
45
,
515
527
Mitchison
T. J.
(
1988
).
Microtubule dynamics and kinetochore function in mitosis.
Annu. Rev. Cell Biol
4
,
527
549
Mitchison
T. J.
,
Salmon
E. D.
(
1992
).
Poleward kinetochore fiber movement occurs during both metaphase and anaphase-A in newt lung cell mitosis.
J. Cell Biol
119
,
569
582
Murray
A. W.
(
1992
).
Creative blocks: cell-cycle checkpoints and feedback controls.
Nature
359
,
599
604
Murray
A. W.
,
Mitchison
T. J.
(
1994
).
Kinetochores pass the IQ test.
Current Biol
4
,
38
41
Nicklas
R. B.
(
1965
).
Chromosome velocity during mitosis as a function of chromosome size and position.
J. Cell Biol
25
,
119
135
Nicklas
R. B.
(
1967
).
Chromosome micromanipulation II. Induced reorientation and the experimental control of segregation in meiosis.
Chromosoma
21
,
17
50
Nicklas
R. B.
,
Staehly
C. A.
(
1967
).
Chromosome micromanipulation I. The mechanics of chromosome attachment to the spindle.
Chromosoma
21
,
1
16
Nicklas
R. B.
(
1983
).
Measurements of the force produced by the mitotic spindle in anaphase.
J. Cell Biol
97
,
542
548
Nicklas
R. B.
,
Krawitz
L. E.
,
Ward
S. C.
(
1993
).
Odd chromosome movement and inaccurate chromosome distribution mitosis and meiosis after treatment with protein kinase inhibitors.
J. Cell Sci
104
,
961
973
Rattner
J. B.
,
Lew
J.
,
Wang
J.-L.
(
1990
).
p35cdc2is localized to distinct domains within the mitotic apparatus.
Cell Motil. Cytoskel
17
,
277
–.
Rieder
C. L.
,
Davison
E. A.
,
Jensen
L. C. W.
,
Cassimeris
L.
,
Salmon
E. D.
(
1986
).
Oscillatory movements of mono-oriented chromosomes and their position relative to the spindle pole result from the ejection properties of the aster and half-spindle.
J. Cell Biol
103
,
581
591
Rieder
C. L.
,
Alexander
S.
,
Rupp
G.
(
1990
).
Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells.
J. Cell Biol
110
,
81
95
Rieder
C. L.
(
1990
).
Formation of the astral mitotic spindle: ultrastructural basis for the centrosome-kinetochore interaction.
In. Electron Microsc. Rev.
3
,
269
300
Rieder
C. L.
,
Hard
R.
(
1990
).
Newt lung epithelial cells: Cultivation, use, and advantages for biomedical research.
Int. Rev. Cytol
122
,
153
220
Rieder
C. L.
,
Salmon
E. D.
(
1994
).
Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle.
J. Cell Biol
124
,
223
233
Sachs
F.
(
1991
).
Mechanical transduction by membrane ion channels: a mini-review.
Mol. Cell Biol
104
,
57
60
Seto
T.
,
Kezer
J.
,
Pomerat
C. M.
(
1969
).
A cinematographic study of meiosis in salamander spermatocytes in vitro.
Z. Zellforsch
94
,
407
424
Shelden
E.
,
Wadsworth
P.
(
1992
).
Microinjection of biotin-tubulin into anaphase cells induces transient elongation of kinetochore microtubules and reversal of chromosome-to-pole motion.
J. Cell Biol
116
,
1409
1420
Shero
J. H.
,
Hieter
P.
(
1991
).
A suppressor of a centromere DNA mutation encodes a putative protein kinase (MCK1).
Genes Dev
5
,
549
560
Skibbens
R. V.
,
Skeen
V. P.
,
Salmon
E. D.
(
1993
).
Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism.
J. Cell Biol
122
,
859
875
Snyder
J. A.
,
Armstrong
L.
,
Stonington
O. G.
,
Spurck
T. P.
,
Pickett-Heaps
J. D.
(
1991
).
UV-microbeam irradiations of the mitotic spindle: spindle forces and structural analysis of lesions.
Eur. J. Cell Biol
55
,
122
132
Surana
U.
,
Amon
A.
,
Dowzer
C.
,
McGrew
J.
,
Byers
B.
,
Nasmyth
K.
(
1993
).
Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast.
EMBO J
12
,
1969
1976
Vale
R. D.
,
Malik
F.
,
Brown
D.
(
1993
).
Directional instability of microtubule transport in the presence of kinesin and dynein, two opposite polarity motor proteins.
J. Cell Biol
119
,
1589
1596
Wise
D.
,
Cassimeris
L.
,
Rieder
C. L.
,
Wadsworth
P.
,
Salmon
E. D.
(
1991
).
Chromosome fiber dynamics and congression oscillations in metaphase PtK2 cells at 23 degrees celsius.
Cell Motil
18
,
1
12
This content is only available via PDF.