Normal human adult articular chondrocytes were used to determine how the chondrocyte phenotype is modulated by culture conditions following long-term culture. We report here for the first time that human articular chondrocytes have a lifespan in the range of 34–37 population doublings. While chondrocytes cultured as monolayers displayed a fibroblastoid morphology and grew faster, those cultured as suspensions over agarose adopted a round morphology and formed clusters of cells reminiscent of chondrocyte differentiation in intact cartilage, with little or no DNA synthesis. These morphologies were independent of the age of the culture. Despite, these morphological differences, however, chondrocytes expressed markers at mRNA and protein levels characteristic of cartilage: namely, types II and IX collagens and the large aggregating proteoglycans, aggrecan, versican and link protein, but not syndecan, under both culture conditions. However, they also expressed type I collagen alpha 1(I) and alpha 2(I) chains. It has been suggested that expression of collagen alpha 1(I) by chondrocytes cultured as monolayers is a marker of the loss of the chondrocyte phenotype. However, we show here, using reverse transcriptase/polymerase chain reaction, that normal fresh intact human articular cartilage expresses collagen alpha 1(I). The data show that following long-term culture human articular chondrocytes retain their differentiated characteristics and that cell shape does not correlate with the expression of the chondrocyte phenotype. It is proposed that loss of the chondrocyte phenotype is marked by the loss of one or more cartilage-specific molecules rather than by the appearance of non-cartilage-specific molecules.

REFERENCES

Aigner
T.
,
Bertling
W.
,
Stross
H.
,
Weseloh
G.
,
von der Mark
K.
(
1993
).
Independent expression of fibril-forming collagens I, II and III in chondrocytes of human osteoarthritic cartilage.
J. Clin. Invest
91
,
829
837
Archer
C.
,
McDowell
J.
,
Bayliss
M.
,
Stephens
M.
,
Bentley
G.
(
1990
).
Phenotypic modulation of sub-populations of human articular chondrocytes in vitro.
J. Cell Sci
97
,
361
371
Aulthouse
A. L.
,
Beck
M.
,
Griffey
E.
,
Sanford
J.
,
Arden
K.
,
Machado
M. A.
,
Horton
W. A.
(
1989
).
Expression of the human chondrocyte phenotype in vitro.
In Vitro Cell Dev. Biol
25
,
659
668
Bassleer
C.
,
Gysen
P.
,
Foidart
J. M.
,
Bassleer
R.
,
Frenchimont
P.
(
1986
).
Human chondrocytes in tridimensional culture.
In VitroCell Dev. Biol
22
,
113
119
Bennett
V. D.
,
Adams
S. L.
(
1987
).
Characterisation of the translational control mechanism preventing synthesis of2(I) collagen in chicken vertebral chondroblasts.
J. Biol. Chem
262
,
14806
148811
Benya
P. D.
,
Padilla
S.
,
Shaffer
J. D.
(
1978
).
Independent regulation of collagen types of chondrocytes during the loss of differentiated function in culture.
Cell
15
,
1313
1321
Benya
P. D.
,
Shaffer
J. D.
(
1982
).
Dedifferentiated chondrocytes re-express the differentiated collagen phenotype when cultured in agarose gels.
Cell
30
,
215
224
Bernard
M. P.
,
Myers
J. C.
,
Chu
M.-L.
,
Ramirez
F.
,
Eikenberry
E. F.
,
Prockop
D. J.
(
1983
).
Structure of a cDNA for the pro2 chain of human type I procollagen. Comparison with chick cDNA for 2(I) identifies structurally conserved features of the protein and the gene.
Biochemistry
22
,
1139
1145
Bonaventure
J.
,
Kadhom
N.
,
Cohen-Solal
L.
,
Ng
K. H.
,
Bourguignon
J.
,
Lasselin
C.
,
Freisinger
P.
(
1994
).
Re-expression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads.
Exp. Cell Res
212
,
97
104
Carney
S. L.
,
Bayliss
M. T.
,
Collier
J. M.
,
Muir
H.
(
1986
).
Electrophoresis of 35S-labelled proteoglycans on polyacrylamide-agarose composite gels and their visualisation by fluorography.
Anal. Biochem
156
,
38
44
Caterson
B.
,
Baker
J. B.
,
Christner
J. E.
,
Lee
Y.
,
Lentz
M.
(
1985
).
Monoclonal antibodies as probes for determining the microheterogeneity of the link proteins of cartilage proteoglycans.
J. Biol. Chem
260
,
11348
11356
Cheah
K. S. E.
,
Stoker
N. G.
,
Griffin
J. R.
,
Grosveld
F. G.
,
Solomon
E.
(
1985
).
Identification and characterisation of the human type II collagen gene (COL2A1).
Proc. Nat. Acad. Sci. USA
82
,
2555
2559
Chu
M. l.
,
Myers
J. C.
,
Bernard
M. P.
,
Ding
J. F.
,
Ramirez
F.
(
1982
).
Cloning and characterisation of five overlapping cDNAs specific for the human pro-1(I) collagen chain.
Nucl. Acids Res
10
,
5925
5934
Cizdziel
P. E.
,
Hosoi
J.
,
Montgomery
J. C.
,
Wiseman
R. W.
,
Barrett
J. C.
(
1991
).
Loss of tumour suppressor gene function is correlated with downregulation of chondrocyte-specific collagen expression in Syrian hamster embryo cells.
Mol. Carcinogen
4
,
14
24
Delbruck
A.
,
Dresow
B.
,
Gurr
E.
,
Reale
E.
,
Schroder
H.
(
1986
).
In vitro culture of human chondrocytes from adult subjects.
Conn. Tiss. Res
15
,
115
172
Dudhia
J.
,
Hardingham
T. E.
(
1990
).
The primary structure of human cartilage link protein.
Nucl. Acids Res
18
,
2214
–.
Doege
K.
,
Hassell
J. R.
,
Caterson
B.
,
Yamada
Y.
(
1986
).
Link protein cDNA sequence reveals a tandemly repeated protein structure.
Proc. Nat. Acad. Sci. USA
83
,
3761
3765
Doege
K.
,
Sasaki
M.
,
Kimura
T.
,
Yamada
Y.
(
1991
).
Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, Aggrecan.
J. Biol. Chem
266
,
894
902
Feinberg
A. P.
,
Vogelstein
B.
(
1983
).
A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity.
Anal. Biochem
132
,
6
13
Gibson
G. J.
,
Francki
K. T.
,
Hopwood
J. J.
,
Foster
B. K.
(
1991
).
Human and Sheep growth-plate cartilage type X collagen synthesis and the influence of tissue storage.
Biochem. J
277
,
513
520
Glowacki
J.
,
Trepman
E.
,
Folkman
J.
(
1983
).
Cell shape and phenotypic expression in chondrocytes.
Proc. Soc. Exp. Biol. Med
172
,
93
98
Grover
J.
,
Roughley
P. J.
(
1993
).
Versican gene expression in human articular cartilage and comparison of mRNA splicing variation with aggrecan.
Biochem. J
291
,
361
367
Gunning
P.
,
Ponte
P.
,
Okayama
H.
,
Engel
J.
,
Blau
H.
,
Kedes
L.
(
1983
).
Isolation and characterisation of full-length cDNA clones for human-, -and-actin mRNAs: Skeletal but not cytoplasmic actins have an amino terminal cysteine that is subsequently removed.
Mol. Cell. Biol
3
,
787
795
Häuselmann
H. J.
,
Fernandes
R. J.
,
Mok
S. S.
,
Schmid
T. M.
,
Block
J. A.
,
Aydelotte
M. B.
,
Kuettner
K. E.
,
Thonar
E. J.
(
1994
).
Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads.
J. Cell Sci
107
,
17
27
Horton
W.
,
Hassell
J. R.
(
1986
).
Independence of cell shape and loss of cartilage matrix production during retinoic acid treatment of cultured chondrocytes.
Dev. Biol
115
,
392
397
Horton
W. E.
,
Cleveland
J.
,
Rapp
U.
,
Nemuth
G.
,
Bolander
M.
,
Doege
K.
,
Yamada
Y.
,
Hassell
J. R.
(
1988
).
An established rat cell line expressing chondrocyte properties.
Exp. Cell Res
178
,
457
468
Kimura
T.
,
Mattei
M.-G.
,
Stevens
J. W.
,
Goldring
M. B.
,
Ninomiya
Y.
,
Olsen
B. R.
(
1989
).
Molecular cloning of rat and human type (IX) collagen cDNA and localisation of the1(IX) gene on the human chromosome 6.
Eur. J. Biochem
179
,
71
78
Kirsch
T.
,
Swoboda
B.
,
von der Mark
K.
(
1992
).
Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralisation.
Differentiation
52
,
89
100
Krusius
T.
,
Gehlsen
K. R.
,
Ruoslahti
E.
(
1987
).
A fibroblast chondroitin sulfate proteoglycan core protein contains lectin-like and growth factor-like sequences.
J. Biol. Chem
262
,
13120
13125
Laemmli
U. K.
(
1970
).
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature
227
,
680
685
Lovell-Badge
R. H.
,
Bygrave
A. E.
,
Bradley
A.
,
Robertson
E.
,
Tilley
R.
,
Cheah
K. S. E.
(
1987
).
Tissue specific expression of the human type II collagen gene in mice.
Proc. Nat. Acad. Sci. USA
84
,
2803
2807
Mali
M.
,
Jaakkola
P.
,
Arvilommi
A.-M.
,
Jalkanen
M.
(
1990
).
Sequence of human syndecan indicates a novel gene family of integral membrane proteins.
J. Biol. Chem
265
,
6884
6889
Mallein-Gerin
F.
,
Ruggiero
F.
,
Garrone
R.
(
1990
).
Proteoglycan core protein and type II collagen gene expression are not correlated with cell shape changes during low density chondrocyte cultures.
Differentiation
43
,
204
211
Mallein-Gerin
F.
,
Olsen
B. R.
(
1993
).
Expression of simian virus 40 large T (tumour) oncogene in mouse chondrocytes induces cell proliferation without loss of the differentiated phenotype.
Proc. Nat. Acad. Sci. USA
90
,
3289
3293
Marriott
A.
,
Ayad
S.
,
Grant
M. E.
(
1991
).
The synthesis of type X collagen by bovine and human growth-plate chondrocytes.
J. Cell Sci
99
,
641
649
Mendler
M.
,
Eich-Bender
S. G.
,
Vaughan
L.
,
Winterhalter
K. H.
,
Bruckner
P.
(
1989
).
Cartilage contains mixed fibrils of collagen types II, IX and XI.
J. Cell. Biol
108
,
191
197
Perkins
S. J.
,
Nealis
A. S.
,
Dudhia
J.
,
Hardingham
T. E.
(
1989
).
Immunoglobulin fold and tandem repeat structures in proteoglycan N-terminal domains and link protein.
J. Mol. Biol
206
,
737
753
Reichenberger
E.
,
Aigner
T.
,
von der Mark
K.
,
Sto
H.
,
Bertling
W.
(
1991
).
In situ hybridisation studies on the expression of type X collagen in foetal human cartilage.
Dev. Biol
148
,
562
572
Stephens
M.
,
Kwan
A. P. L.
,
Bayliss
M. T.
,
Archer
C. W.
(
1992
).
Human articular surface chondrocytes initiate alkaline phosphatase and type X collagen synthesis in suspension.
J. Cell Sci
103
,
1111
1116
Thomas
J. T.
,
Cresswell
C. J.
,
Rash
B.
,
Nicolai
H.
,
Jones
E.
,
Solomon
E.
,
Grant
M. E.
,
Boot-Handford
R. P.
(
1991
).
The human collagen X gene. Complete primary translated sequence and chromosomal localisation.
Biochem. J
280
,
617
623
Treilleux
I.
,
Mallein-Gerin
F.
,
Guellec
D.
,
Herbage
D.
(
1992
).
Localisation of the expression of type I, II, III collagen and aggrecan core protein genes in developing human articular cartilage.
Matrix
12
,
221
232
Watt
F. M.
,
Dudhia
J.
(
1988
).
Prolonged expression of differentiated phenotype by chondrocytes cultured at low density on a composite substrate of collagen and agarose that restricts cell spreading.
Differentiation
38
,
140
147
This content is only available via PDF.