Characterization of nuclear protein transport in digitonin-permeabilized cells revealed that the number of the nuclear localization signal sequences (NLS) within the transport substrate basically influences the mechanism of the transport reaction. Phycoerythrine-NLS transport substrate carrying a maximum of 4–5 conjugated NLSs/subunit, or Bsp methyltransferase-NLS fusion protein were efficiently transported into the nuclei of digitonin-permeabilized cultured cells without any exogenously added cytosolic protein. All the characteristic properties of in vivo nuclear transport are faithfully reproduced with these transport substrates: (i) the transport requires a functional NLS in the transported protein, a transport-incompetent mutant NLS being ineffective; (ii) the transport is energy dependent; (iii) the wild type nuclear localization peptide efficiently competes for transport, while the transport-incompetent mutant peptide does not; and (iv) wheat germ agglutinin inhibits this transport reaction. Nuclear transport observed with these substrates was not due to any damage of the nuclear membrane or inefficient extraction of the cytosolic proteins during the permeabilization of the cells. The nuclear transport was proportional to the number of conjugated NLSs. Nuclear transport of phycoerythrine carrying 7–8 conjugated NLSs/subunit required the addition of exogenous cytosolic proteins. This transport also fulfilled all the characteristic properties of an authentic nuclear transport. Nuclear transport with different combinations of transport substrates further supported the assumption that distinct transport mechanisms operate for different substrates. From a mixture of PE-NLS7-8 and Bsp methyltransferase-NLS, the highly conjugated substrate was completely retained in the cytoplasm in the absence of exogenous cytosol, while Bsp methyltransferase-NLS was efficiently transported. Exogenous cytosol promoted the nuclear transport of the highly conjugated substrate.

Adam
S. A.
,
Sterne-Marr
R.
,
Gerace
L.
(
1990
).
Nuclear protein import in permeabilized mammalian cells requires cytoplasmic factors.
J. Cell Biol
111
,
807
816
Adam
S. A.
,
Gerace
L.
(
1991
).
Cytosolic proteins that specifically bind nuclear location signals are receptors for nuclear import.
Cell
66
,
837
847
Breeuwer
M.
,
Goldfarb
D. S.
(
1990
).
Facilitated nuclear transport of histone H1 and other small nucleophilic proteins.
Cell
60
,
999
1008
Dingwall
C.
(
1991
).
Transport across the nuclear envelope: enigmas and explanations.
BioEssays
13
,
213
218
Dingwall
C.
,
Laskey
R.
(
1992
).
The nuclear membrane.
Science
258
,
942
947
Feldherr
C. M.
,
Cohen
R. J.
,
Ogburn
J. A.
(
1983
).
Evidence for mediated protein uptake by amphibian oocyte nuclei.
J. Cell Biol
96
,
1486
1490
Garcia-Bustos
J.
,
Heitman
J.
,
Hall
M. N.
(
1991
).
Nuclear protein localization.
Biochim. Biophys. Acta
1071
,
83
101
Goldfarb
D. S.
,
Gariepy
J.
,
Schoolnik
G.
,
Kornberg
R. D.
(
1986
).
Synthetic peptides as nuclear localization signals.
Nature
332
,
641
644
Hall
M. N.
,
Craik
C.
,
Hiraoka
Y.
(
1990
).
Homeodomain of yeast repressor a2 contains a nuclear localization signal.
Proc. Nat. Acad. Sci. USA
87
,
6954
6958
Hanover
J. A.
(
1992
).
The nuclear pore: at the crossroads.
FASEB J
6
,
2288
2295
Hennekes
H.
,
Peter
M.
,
Weber
K.
,
Nigg
E. A.
(
1993
).
Phosphorylation on protein kinase C sites inhibits nuclear import of Lamin B2.
J. Cell Biol
120
,
1293
1304
Hurt
E. C.
(
1993
).
The nuclear pore complex.
FEBS Lett
325
,
76
80
Kalderon
D.
,
Richardson
W. D.
,
Markham
A. T.
,
Smith
A. E.
(
1984
).
Sequence requirements for nuclear location of simian virus 40 large-T antigen.
Nature
311
,
33
38
Kornbluth
S.
,
Dasso
M.
,
Newport
J.
(
1994
).
Evidence for a dual role for TC4 protein in regulating nuclear structure ans cell cycle progression.
J. Cell Biol
125
,
705
719
Lanford
R. E.
,
Butel
J. S.
(
1984
).
Construction and characterization of an SV 40 mutant defective in nuclear transport of T antigen.
Cell
37
,
801
813
Lanford
R. E.
,
Kanda
P.
,
Kennedy
R. C.
(
1986
).
Induction of nuclear transport with a synthetic peptide homologous to the SV 40 T antigen transport signal.
Cell
46
,
575
582
Melchior
F.
,
Paschal
B.
,
Evans
J.
,
Gerrace
L.
(
1993
).
Inhibition of nuclear protein import by nonhydrolyzable analogues of GTP and identification of the small GTPase Ran/TC4 as an essential transport factor.
J. Cell Biol
123
,
1649
1659
Newmeyer
D. D.
,
Lucocq
J. M.
,
Burglin
T. R.
,
De Robertis
E. M.
(
1986
).
Assembly in vitro of nuclei active in nuclear protein transport: ATP is required for nucleoplasmin accumulation.
EMBO J
5
,
5021
510
Newmeyer
D. D.
,
Finlay
D. R.
,
Forbes
D. J.
(
1986
).
In vitro transport of a fluorescent nuclear protein and exclusion of non-nuclear proteins.
J. Cell Biol
103
,
2091
2102
Newmeyer
D. D.
,
Forbes
D. J.
(
1988
).
Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation.
Cell
52
,
641
653
Newmeyer
D. D.
,
Forbes
D. J.
(
1990
).
An N-ethylmaleimide-sensitive cytosolic factor necessary for nuclear protein import: requirement in signal-mediated binding.
J. Cell Biol
110
,
547
557
Newmeyer
D. D.
(
1993
).
The nuclear pore complex and the nucleocytoplasmic transport.
Curr. Opin. Cell Biol
5
,
395
407
Newport
J.
(
1987
).
Nuclear reconstitution in vitro: stages of assembly around protein-free DNA.
Cell
48
,
205
217
Nigg
E. A.
,
Baeuerle
P. A.
,
Luhrmann
R.
(
1991
).
Nuclear import-export: in search of signals and mechanisms.
Cell
66
,
15
22
Osborn
M. A.
,
Silver
P. A.
(
1993
).
Nucleocytoplasmic transport in the yeast Saccharomyces cerevisiae.
Annu. Rev. Biochem
62
,
219
254
Paine
P. L.
,
Moore
L. C.
,
Horowitz
S. B.
(
1975
).
Nuclear envelope permeability.
Nature
254
,
109
114
Peters
R.
(
1986
).
Fluorescence microphotolysis to measure nucleocytoplasmic transport and intracellular mobility.
Biochim. Biophys. Acta
864
,
305
359
Pickard
D.
,
Yamamoto
K.
(
1987
).
Two signals mediate hormone-dependent nuclear localization of the glycocorticoid receptor.
EMBO J
6
,
3333
3340
Posfai
Gy.
,
Kiss
A.
,
Venetianer
P.
(
1986
).
Overproduction of the Bacillus sphericus R modification methylase in E. coli and its purification to homogeneity.
Gene
50
,
63
67
Richardson
W. D.
,
Mills
A. D.
,
Dilworth
S. M.
,
Laskey
R. A.
,
Dingwall
C.
(
1988
).
Nuclear protein migration involves two steps: rapid binding at the nuclear envelope followed by slower translocation through nuclear pores.
Cell
52
,
655
664
Roberts
B. L.
,
Richardson
W. D.
,
Smith
A. E.
(
1987
).
The effect of protein context on the nuclear location signal function.
Cell
50
,
465
475
Rupp
R. A. W.
,
Snider
L.
,
Weintraub
H.
(
1994
).
Xenopus embryos regulate the nuclear localization of XMyoD.
Genes Dev
8
,
1311
1323
Shannon Moore
M.
,
Blobel
G.
(
1992
).
The two steps of nuclear import, targeting to the nuclear envelope and translocation through the nuclear pore, require different cytosolic factors.
Cell
69
,
939
950
Shannon Moore
M.
,
Blobel
G.
(
1993
).
The GTP-binding proteinRan/TC4 is required for protein import into the nucleus.
Nature
365
,
661
663
Shi
Y.
,
Thomas
J. O.
(
1992
).
The transport of proteins into the nucleus requires the 70-kilodalton heat shock protein or its cytosolic cognate.
Mol. Cell. Biol
12
,
2186
2192
Silver
P. A.
(
1991
).
How proteins enter the nucleus.
Cell
64
,
489
497
Sterne-Marr
R.
,
Blevitt
J. M.
,
Gerace
L.
(
1992
).
O-linked glycoproteins of the nuclear pore complex interact with a cytosolic factor required for the nuclear protein import.
J. Cell Biol
116
,
271
280
Stochaj
U.
,
Silver
P. A.
(
1992
).
A conserved phosphoprotein that specifically binds nuclear localization sequences is involved in nuclear import.
J. Cell Biol
117
,
473
482
Stochaj
U.
,
Bossie
M. A.
,
van Zee
K.
,
Whalen
A. M.
,
Silver
P. A.
(
1993
).
Analysis of conserved binding proteins for nuclear localization sequences.
J. Cell Sci
104
,
89
95
Takemoto
Y.
,
Tashiro
S.
,
Handa
H.
,
Ishii
S.
(
1994
).
Multiple nuclear localization signals of the B-myb gene product.
FEBS Lett
350
,
55
60
Udvardy
A.
(
1993
).
Purification and characterization of a multiprotein component of the Drosophila 26S (1500 kDa) proteolytic complex.
J. Biol. Chem
268
,
9055
9062
Yamasaki
L.
,
Kanda
P.
,
Lanford
R. E.
(
1989
).
Identification of four nuclear transport signal-binding proteins that interact with diverse transport signals.
Mol. Cell. Biol
9
,
3028
3036
Zabel
U.
,
Henkel
T.
,
dos Santos Silva
M.
,
Baeuerle
P.
(
1993
).
Nuclear uptake control of NF-kB by MAD-3 an IkB protein present in the nucleus.
EMBO. J
12
,
201
211
This content is only available via PDF.