To facilitate functional studies of novel myosins, we have developed a strategy for characterizing the mechanochemical properties of motors isolated by immunoadsorption directly from small amounts of crude tissue extracts. In this initial study, silica beads coated with an antibody that specifically recognizes the tail of myosin-V were used to immunoadsorb this motor protein from brain extracts. The myosin-containing beads were then positioned with optical tweezers onto actin filaments nucleated from Limulus sperm acrosomal processes and observed for motility using high resolution video DIC microscopy. The addition of brush border spectrin to the motility chamber enabled the growth of stable actin filament tracks that were approximately 4-fold longer than filaments grown in the absence of this actin crosslinking protein. The velocity of myosin-V immunoadsorbed from brain extracts was similar to that observed for purified myosin-V that was antibody-linked to beads or assessed using the sliding actin filament assay. Motile beads containing myosin-V immunoadsorbed from brain extracts bound poorly to nucleated actin filaments and were incapable of linear migrations following the addition of a different antibody that specifically recognizes the motor-containing head domain of myosin-V. Myosin-V motility was most robust in the absence of Ca2+. Interestingly, skeletal muscle tropomyosin and brush border spectrin had no detectable effect on myosin-V mechanochemistry. Myosin-V containing beads were also occasionally observed migrating directly on acrosomal processes in the absence of exogenously added actin.(ABSTRACT TRUNCATED AT 250 WORDS)

REFERENCES

Adams
R. J.
,
Pollard
T. D.
(
1989
).
Binding of myosin I to membrane lipids.
Nature
340
,
565
588
Bearer
E. L.
,
DeGiorgis
J. A.
,
Bodner
R. A.
,
Kao
A. W.
,
Reese
T. S.
(
1993
).
Evidence for myosin motors on organelles in squid axoplasm.
Proc. Nat. Acad. Sci. USA
90
,
11252
1125
Bonder
E. M.
,
Fishkind
D. J.
,
Mooseker
M. S.
(
1983
).
Direct measurement of critical concentrations and assembly rate constants at the two ends of an actin filament.
Cell
34
,
491
501
Bonder
E. M.
,
Mooseker
M. S.
(
1983
).
Direct electron microscopic visualization of barbed end capping and filament cutting by intestinal microvillar 95-kdalton protein (Villin): A new actin assembly assay using the Limulus acrosomal process.
J. Cell Biol
96
,
1097
1107
Cheney
R. E.
,
Mooseker
M. S.
(
1992
).
Unconventional myosins.
Curr. Opin. Cell Biol
4
,
27
35
Cheney
R. E.
,
O'Shea
M. K.
,
Heuser
J. E.
,
Coelho
M. V.
,
Wolenski
J. S.
,
Espreafico
E. M.
,
Forscher
P.
,
Larson
R. E.
,
Mooseker
M. S.
(
1993
).
Brain myosin-V is a two-headed unconventional myosin with motor activity.
Cell
75
,
13
23
Coleman
T. R.
,
Fishkind
D. J.
,
Mooseker
M. S.
,
Morrow
J. S.
(
1989
).
Contributions of the-subunit to spectrin structure and function.
Cell Motil. Cytoskel
12
,
248
263
Doberstein
S. K.
,
Baines
I. C.
,
Wiegand
G.
,
Korn
E. D.
,
Pollard
T. D.
(
1993
).
Inhibition of contractile vacuole function in vivo by antibodies against myosin-I.
Nature
365
,
841
843
Espreafico
E. M.
,
Cheney
R. E.
,
Matteoli
M.
,
Nascimento
A. A. C.
,
De Camilli
P. V.
,
Larson
R. E.
,
Mooseker
M. S.
(
1992
).
Primary structure and cellular localization of chicken brain myosin-V (p190), an unconventional myosin with calmodulin light chains.
J. Cell Biol
119
,
1541
1557
Fath
K. R.
,
Trimbur
G. M.
,
Burgess
D. R.
(
1994
).
Molecular motors are differentially distributed on Golgi membranes from polarized epithelial cells.
J. Cell Biol
126
,
661
666
Fanning
A. S.
,
Wolenski
J. S.
,
Mooseker
M. S.
,
Izant
J. G.
(
1994
).
Regulation of skeletal myosin and brush border myosin-I by bacterially-produced tropomyosin isoforms.
Cell Motil. Cytoskel
29
,
29
45
Finer
J. R.
,
Simmons
R. M.
,
Spudich
J. A.
(
1994
).
Single myosin molecule mechanics: piconewton forces and nanometre steps.
Nature
368
,
113
119
Fishkind
D. J.
,
Mooseker
M. S.
,
Bonder
E. M.
(
1985
).
Actin assembly and filament cross-linking in the presence of TW 260/240, the tissue-specific spectrin of the chicken intestinal brush border.
Cell Motil
5
,
311
322
Harada
Y.
,
Sakurada
K.
,
Aoki
T.
,
Thomas
D. D.
,
Yanagida
T.
(
1990
).
Mechanochemical coupling in actomyosin energy transduction studied in an in vitro movement assay.
J. Mol. Biol
216
,
49
68
Hayden
S. M.
,
Wolenski
J. S.
,
Mooseker
M. S.
(
1990
).
Binding of brush border myosin I to phospholipid vesicles.
J. Cell Biol
111
,
443
451
Ishijima
A.
,
Doi
T.
,
Sakurada
K.
,
Yanagida.
T.
(
1991
).
Sub-piconewton force fluctuations of actomyosin in vitro.
Nature
352
,
301
306
Johnston
G. C.
,
Prendergrast
J. A.
,
Singer
R. A.
(
1991
).
The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectoral transport of vesicles.
J. Cell Biol
113
,
539
551
Kishino
A.
,
Yanagida
T.
(
1988
).
Force measurements by micromanipulation of a single actin filament by glass needles.
Nature
334
,
74
76
Kron
S. J.
,
Spudich
J. A.
(
1986
).
Fluorescent actin filaments move on myosin fixed to a glass surface.
Proc. Nat. Acad. Sci. USA
83
,
6272
6276
Langford
G. M.
,
Kuznetsov
S. A.
,
Johnson
D. A.
,
Cohen
D. L.
,
Weiss
D. G.
(
1994
).
Movement of axoplasmic organelles on actin filaments assembled on acrosomal processes: evidence for a barbed-end-directed organelle motor.
J. Cell Sci
107
,
2291
2298
Lehman
W.
,
Craig
R.
,
Vibert
P.
(
1994
).
Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction.
Nature
368
,
65
67
Lillie
S. H.
,
Brown
S. S.
(
1994
).
Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae.
J. Cell Biol
125
,
825
842
Lowey
S.
,
Waller
G. S.
,
Trybus
K. M.
(
1993
).
Skeletal muscle myosin light chains are essential for physiological speeds of shortening.
Nature
365
,
454
456
Matsudaira
P.
(
1994
).
The fimbrin and alpha-actinin footprint on actin.
J. Cell Biol
126
,
285
287
McGough
A.
,
Way
M.
,
DeRosier
D.
(
1994
).
Determination of the-actinin-binding site on actin filaments by cryoelectron microscopy and image analysis.
J. Cell Biol
126
,
433
443
Mercer
J. A.
,
Seperack
P. K.
,
Strobel
M. C.
,
Copeland
N. G.
,
Jenkins.
N. A.
(
1991
).
Novel myosin heavy chain encoded by murine dilute coat colour locus.
Nature
349
,
709
713
(erratum in. Nature 352, 547–.
Nishizaka
T.
,
Yagi
T.
,
Tanaka
Y.
,
Ishiwata
S.
(
1993
).
Right-handed rotation of an actin filament in an in vitro motile system.
Nature
361
,
269
271
Owen
C.
,
DeRosier
D. J.
(
1993
).
A 13-Å map of the actin-scruin filament from the Limulus acrosomal process.
J. Cell Biol
123
,
337
344
Rayment
I. H.
,
Holden
M.
,
Whittaker
M.
,
Yohn
C. B.
,
Lorena
M.
,
Holmes
K. C.
,
Milligan
R. A.
(
1993
).
Structure of the actin-myosin complex and its implication for muscle contraction.
Science
261
,
58
65
Schmid
M. F.
,
Agris
J. M.
,
Jakana
J.
,
Matsudaira
P.
,
Chiu
W.
(
1994
).
Three-dimensional structure of a single filament in the Limulus acrosomal bundle: Scruin binds to homologous helix-loop-beta motifs in actin.
J. Cell Biol
124
,
341
350
Schnapp
B. J.
,
Reese
T. S.
(
1989
).
Dynein is the motor for retrograde axonal transport of organelles.
Proc. Nat. Acad. Sci. USA
86
,
1548
1552
Schroder
R. R.
,
Manstein
D. J.
,
Jahn
W.
,
Holden
H.
,
Rayment
I.
,
Holmes
K. C.
,
Spudich
J. A.
(
1993
).
Three-dimensional atomic model of F-actin decorated with Dictyostelium myosin S1.
Nature
364
,
171
174
Schroer
T. A.
,
Steuer
E. R.
,
Sheetz
M. P.
(
1989
).
Cytoplasmic dynein is a minus-end directed motor for membranous organelles.
Cell
56
,
937
946
Sheetz
M. P.
,
Spudich
J. A.
(
1983
).
Movement of myosin-coated fluorescent beads on actin cables in vitro.
Nature
303
,
35
39
Shimmen
T.
,
Yano
M.
(
1984
).
Active sliding movement of latex beads coated with skeletal muscle myosin on Chara actin bundles.
Protoplasma
121
,
132
137
Smillie
L. B.
(
1982
).
Preparation and identification of-and -tropomyosins.
Meth. Enzymol
85
,
234
241
Spudich
J. A.
,
Watt
S. J.
(
1971
).
The regulation of rabbit skeletal muscle contraction.
J. Biol. Chem
246
,
4866
4871
Svoboda
K.
,
Block
S. M.
(
1994
).
Biological applications of optical forces.
Annu. Rev. Biophys. Biomol. Struct
23
,
247
285
Sweeney
H. L.
,
Straceski
A. J.
,
Leinwand
L. A.
,
Tikunov
B. A.
,
Faust
L.
(
1994
).
Heterologous expression of a cardiomyopathic myosin that is defective in its actin interaction.
J. Biol. Chem
269
,
1603
1605
Tilney
L. G.
(
1975
).
Actin filaments in the acrosomal reaction of Limulus sperm.
J. Cell Biol
64
,
289
310
Tilney
L. G.
,
Bonder
E. M.
,
DeRosier
D. J.
(
1981
).
Actin filaments elongate from their membrane-associated ends.
J. Cell Biol
90
,
485
494
Toyoshima
Y. Y.
(
1991
).
Flexibility in actin-myosin motility system revealed by in vitro motility assay.
Advan. Biophys
27
,
213
220
Umemoto
S.
,
Benguar
A. R.
,
Sellers
J. R.
(
1989
).
Effect of multiple phosphorylations of smooth muscle and cytoplasmic myosins on movement in an in vitro motility assay.
J. Biol. Chem
264
,
1431
1436
Uyeda
T. Q. P.
,
Kron
S. J.
,
Spudich
J. A.
(
1990
).
Myosin step size. Estimation from slow sliding movements of actin over low densities of heavy meromyosin.
J. Mol. Biol
214
,
699
710
Warshaw
D. M.
,
Desrosiers
J. M.
,
Work
S. S.
,
Trybus
K. M.
(
1990
).
Smooth muscle myosin cross-bridge interactions modulate actin filament sliding velocity in vitro.
J. Cell Biol
111
,
453
463
Wolenski
J. S.
,
Hayden
S. M.
,
Forscher
P.
,
Mooseker
M. S.
(
1993
).
Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry.
J. Cell Biol
122
,
613
621
Wolenski
J. S.
,
Cheney
R. E.
,
Forscher
P.
,
Mooseker
M. S.
(
1993
).
In vitro motilities of the unconventional myosins brush border myosin-I, and chick brain myosin-V exhibit assay-dependent differences in velocity.
J. Exp. Zool
267
,
33
39
This content is only available via PDF.