The parietal cell of the gastric mucosa undergoes rapid morphological transformation when it is stimulated to produce hydrochloric acid. In chemically fixed cells, this process is seen as a reduction in number of cytoplasmic ‘tubulovesicles’ as the apical surface of the cell progressively invaginates to increase the secretory surface area. It is widely believed that the tubulovesicles represent stored secretory membrane in the cytoplasm of the unstimulated cell, which is incorporated into the apical membrane upon stimulation, because they share H+,K+-ATPase activity with the apical membrane. However, fusion of tubulovesicles with the apical membrane concomitant with parietal cell activation has never been convincingly demonstrated. We have used fast freeze-fixation and freeze-substitution to study stages of morphological transformation in these cells. Tubulovesicles were not seen in the cytoplasm of any of our cryoprepared cells. Instead, the cytoplasm of the unstimulated cell contained numerous and densely packed helical coils of tubule, each having an axial core of cytoplasm. The helical coils were linked together by connecting tubules, lengths of relatively straight tubule. Lengths of straight connecting tubule also extended from coils lying adjacent to the apical and canalicular surfaces and ended at the apical and canaliculus membranes. Immunogold labelling with alpha- and beta-subunit-specific antibodies showed that the gastric H+,K+-ATPase was localized to the membranes of this tubular system, which therefore represented the configuration of the secretory membrane in the cytoplasm of the unstimulated parietal cell. Stimulation of the cells with histamine and isobutylmethylxanthine lead to modification of the tubular membrane system, correlated with progressive invagination of the apical membrane. The volume of the tubule lumen increased and, as this occurred, the tight spiral twist of the helical coils was lost, indicating that tubule distension was accounted for by partial unwinding. This exposed the cores of cytoplasm in the axes of the coils as rod-shaped elements of a three-dimensional reticulum, resembling a series of microvilli in random thin sections. Conversely, treatment with the H2 antagonist cimetidine caused severe contraction of the tubular membrane system and intracellular canaliculi. Our results indicate that tubulovesicles are an artifact of chemical fixation; consequently, they cannot have a role in parietal cell transformation. From our findings we propose an alternative model for morphological transformation in the parietal cell. This model predicts cytoskeleton-mediated control over expansion and contraction of the tubular membrane network revealed by cryopreparation. The model is compatible with the localization of cytoskeletal components in these cells.

REFERENCES

Baatsen
P. H. W. W.
(
1993
).
Empirically determined freezing time for quick-freezing with a liquid-nitrogen-cooled copper block.
J. Microsc
172
,
71
79
Berryman
M.
,
Frank
Z.
,
Bretscher
A.
(
1993
).
Ezrin is concentrated in the apical microvilli of a wide variety of epithelial cells whereas moesin is found primarily in endothelial cells.
J. Cell Sci
105
,
1025
1043
Black
J. A.
,
Forte
T. M.
,
Forte
J. G.
(
1980
).
Structure of oxyntic cell membranes during conditions of rest and secretion of HCl as revealed by freeze-fracture.
Anat. Rec
196
,
163
172
Callaghan
J. M.
,
Toh
B.-H.
,
Pettitt
J. M.
,
Humphris
D. C.
,
Gleeson
P. A.
(
1990
).
Poly- N -acetyllactosamine-specific tomato lectin interacts with gastric parietal cells. Identification of a tomato-lectin binding 60–90103 M rmembrane glycoprotein of tubulovesicles.
J Cell Sci
95
,
563
576
Chandler
D. E.
(
1984
).
Comparison of quick-frozen and chemically fixed sea-urchin eggs: structural evidence that cortical granule exocytosis is preceded by a local increase in membrane mobility.
J. Cell Sci
72
,
23
36
Forte
J. G.
,
Hanzel
D. K.
,
Okamoto
C.
,
Chow
D.
,
Urushidani
T.
(
1990
).
Membrane and protein recycling associated with gastric HCl secretion.
J. Intern. Med
228
,
1
–.
Gespach
C.
,
Bataille
D.
,
Dupont
G. R.
,
Wunsch
E.
,
Jaeger
E.
(
1980
).
Evidence for a cyclic AMP system highly sensitive to secretin in gastric glands isolated from rat fundus and antrum.
Biochim. Biophys. Acta
630
,
433
441
Gibert
A. J.
,
Hersey
S. J.
(
1982
).
Morphometric analysis of parietal cell membrane transformation in isolated gastric glands.
J. Membr. Biol
67
,
113
124
Gilkey
J. C.
,
Staehlin
L. A.
(
1986
).
Advantages in ultrarapid freezing for the preservation of cellular ultrastructure.
J. Electron Microsc. Tech
3
,
177
210
Hanzel
D.
,
Reggio
H.
,
Bretscher
A.
,
Forte
J. G.
,
Maneat
P.
(
1991
).
The secretion-stimulated 80 K phosphoprotein of perietal cells is ezrin, and has roperties of a membrane cytoskeletal linker in the induced apical microvilli.
EMBO J
10
,
2363
2373
Heath
I. B.
,
Rethoret
K.
,
Arsenault
A. L.
,
Ottensmeyer
F. P.
(
1985
).
Improved preservation of the form and contents of wall vesicles and the Golgi apparatus in freeze substituted hyphae of Saprolegnia.
Protoplasma
128
,
81
93
Helander
H. F.
,
Keeling
D. J.
(
1993
).
Cell biology of gastric acid secretion.
Bailliere's Clin. Gastroenterol
7
,
1
21
Hyde
G. J.
,
Lancelle
S.
,
Hepler
P. K.
,
Hardham
A. R.
(
1991
).
Freeze substitution reveals a new model for sporangial wall cleavage in Phytophthora, a result with implications for cytokinesis in other eukaryotes.
J. Cell Sci
100
,
735
746
Ito
S.
,
Schofield
G. C.
(
1974
).
Studies on the depletion and accumulation of microvilli and changes in the tubulovesicular compartment of mouse parietal cells in relation to gastric acid secretion.
J. Cell Biol
63
,
364
382
Jones
C. M.
,
Toh
B.-H.
,
Pettitt
J. M.
,
Martinelli
T. M.
,
Humphris
D. C.
,
Callaghan
J. M.
,
Goldkorn
I.
,
Mu
F.-T.
,
Gleeson
P. A.
(
1991
).
Monoclonal antibodies specific for the core protein of the-subunit of the gastric proton pump (H+/K+ATPase). An autoantigen targetted in pernicious anaemia.
Eur. J. Biochem
197
,
49
59
Kellenberger
E.
(
1991
).
The potential of cryofixation and freeze substitution: observations and theoretical considerations.
J. Microsc
161
,
183
203
Kellenberger
E.
,
Johansen
R.
,
Maeder
M.
,
Bohrmann
B.
,
Stautter
E.
,
Villiger
W.
(
1992
).
Artefacts and morphological changes during chemical fixation.
J. Microsc
168
,
181
201
Lancelle
S.
,
Callaham
D. A.
,
Hepler
P. K.
(
1986
).
A method for rapid freeze fixation of plant cells.
Protoplasma
131
,
153
165
Mangeat
P.
,
Gusdinar
T.
,
Sahuquet
A.
,
Hanzel
D. K.
,
Forte
J. G.
,
Magous
R.
(
1990
).
Acid secretion and membrane reorganization in single gastric parietal cell in primary culture.
Biol. Cell
69
,
223
232
Mercier
F.
,
Reggio
H.
,
Devilliers
G.
,
Bataille
D.
,
Mangeat
P.
(
1989
).
A marker of acid-secreting membrane movement in rat gastric parietal cells.
Biol. Cell
65
,
7
20
Mercier
F.
,
Reggio
H.
,
Devilliers
G.
,
Bataille
D.
,
Mangeat
P.
(
1989
).
Membrane-cytoskeleton dynamics in rat parietal cells: mobilization of actin and spectrin upon stimulation of gastric acid secretion.
J. Cell Biol
108
,
441
453
Mersey
B.
,
McCully
M. E.
(
1978
).
Monitoring the course of fixation of plant cells.
J. Microsc
114
,
49
76
Morgenstern
E.
(
1991
).
Aldehyde fixation causes membrane vesiculation during platelet exocytosis: a freeze-substitution study.
Scanning Microsc. Suppl
5
,
109
–.
Muller
M.
,
Marti
T.
,
Kriz
S.
(
1980
).
Improved structural preservation by freeze substitution.
Electron Microsc
2
,
720
721
Ogata
T.
,
Yamasaki
Y.
(
1993
).
Ultra-high-resolution scanning electron microscopic studies on the membrane system of the parietal cells of the rat in the resting state and shortly after stimulation.
Anat. Rec
237
,
208
219
Orrego
H.
,
Navia
E.
,
Vial
J. D.
(
1966
).
Effects of puromycin on the membrane changes of the stimulated oxyntic cell.
Exp. Cell Res
43
,
351
357
Pettitt
J. M.
,
Toh
B.-H.
,
Callaghan
J. M.
,
Gleeson
P. A.
,
Van Driel
I. R.
(
1993
).
Gastric parietal cell development: expression of the H+/K+ATPase subunits coincides with biogenesis of the secretory membranes.
Immunol. Cell Biol
71
,
191
200
Rabon
E. C.
,
Ruben
M. A.
(
1990
).
The mechanism and structure of the gastric H, K-ATPase.
Annu. Rev. Physiol
52
,
321
344
Ryan
K. P.
,
Purse
D. H.
(
1985
).
Plunge-cooling of tissue blocks: determinants of cooling rates.
J. Microsc
140
,
47
54
Soroka
C. J.
,
Chew
C. S.
,
Hanzel
D. K.
,
Smolka
A.
,
Modlin
I. M.
,
Goldenring
J. R.
(
1993
).
Characterization of membrane and cytoskeletal compartments in cultured parietal cells: immunofluorescence and confocal microscopic examination.
Eur. J. Cell Biol
60
,
76
87
Urushidani
T.
,
Hanzel
D. H.
,
Forte
J. G.
(
1987
).
Protein phophorylation associated with stimulation of rabbit gastric glands.
Biochim. Biophys. Acta
930
,
209
219
Vial
J. D.
,
Garrido
J.
,
Gonzales
A.
(
1985
).
The early changes of parietal cell structure in the course of secretory activity in the rat.
Am. J. Anat
172
,
291
306
Wilson
T. P.
,
Canny
M. J.
,
McCully
M. E.
,
Lefkovitch
L. P.
(
1990
).
Breakdown of cytoplasmic vacuoles. A model of endoplasmic membrane rearrangement.
Protoplasma
155
,
144
152
Young
S. J.
,
Royer
S. M.
,
Groves
P. M.
,
Kinnamon
J. C.
(
1987
).
Three-dimensional reconstructions from serial micrographs using the IBM PC.
J. Electron Microsc. Tech
6
,
207
217
This content is only available via PDF.